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Abstract

Automatic detection and classification of cardiac disor-
ders play a critical role in the analysis of clinical electro-
cardiogram (ECG). Deep learning methods are effective
for automated feature extraction and have shown promis-
ing results in ECG classification. In this work, we pro-
posed a deep spatio-temporal ECG network (ST-ECGNet)
to extract robust spatio-temporal features for detecting
multiple cardiac disorders from the multi-lead ECG data.
The proposed ST-ECGNet combines a Convolutional Neu-
ral Network (CNN) module for extracting local spatial fea-
tures, an attention module for capturing global spatial
features, and a Bi-directional Gated Recurrent Unit (Bi-
GRU) module for extracting temporal features from ECG
data. Specifically, the attention mechanism enables our
deep learning architecture to focus on the most important
and useful parts of the input to make more accurate predic-
tions. In PhysioNet/Computing in Cardiology Challenge
2021, our entry was not officially ranked and scored on
the test data of the Challenge, because our code was not
successfully processed during the official phase and failed
to run with errors.

1. Introduction

Cardiovascular diseases (CVDs) are the main cause of
death in the world nowadays, taking an estimated 17.9
million human lives each year. Therefore, detecting and
treating heart diseases are of great importance and attract
more attention worldwide. The electrocardiogram (ECG)
that measures the electrical activity of the heart diseases is
a clinical tool widely utilised for the clinical diagnosis of
multiple cardiac diseases [1]. However, manual interpreta-
tion of ECG is a time-consuming task, and requires expe-
rienced cardiologists. Thus, computer-aided interpretation
has become increasingly adopted in the process of clinical
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diagnosis, assisting the cardiologist with health care deci-
sion making.

Many traditional machine learning methods have been
employed for ECG signal classification. In these methods,
a variety of features are firstly extracted from ECG record-
ings using different techniques, such as Discrete Wavelet
Transform (DWT) [2] and Pan Tompkins algorithm [3].
Then, a classification method, such as Support Vector Ma-
chine (SVM) [4] and Hidden Markov model (HMM) [5],
is employed for classification. However, these approaches
have two main drawbacks: 1) they rely heavily on the
carefully selected features, which has been reported in-
sufficient to handle multi-class classification tasks using
these approches. 2) The accuracy of machine learning al-
gorithm is much lower than that by a cardiologist due to
the poor feature representation capability and high com-
plexity of ECG classification tasks. Convolutional neu-
ral networks (CNNs) have recently achieved great success
in detecting cardiovascular abnormalities from ECG data
[6]. The major advantage of CNNs is that they are able
to automatically learn discriminative features from raw in-
put data without requiring data preprocessing and feature
engineering [6]. However, CNNs cannot capture sufficient
global spatial information in many cases due to the small-
size convolutional filters they use when extracting feature
representations. For example, CNNs commonly used 3x3
convolutional filters that have 9 pixels, the value of an out-
put pixel is calculated with only referring to the 9 sur-
rounding pixels which means only local information have
been applied to compute an output pixel. This will bring
some bias as global information is not seen. Using larger
convolution filters may mitigate the problem, however, the
computational overhead gets heavier and the performance
has not been improved remarkably in practice. Therefore,
introducing efficient modules to capture global informa-
tion is of vital importance for CNNs.

In this work, we aim to 1) develop a novel end-to-end
multi-label cardiac disease detection framework, where
a deep CNN module, an attention module, and a Bi-
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Figure 1. Overall framework of the proposed ST-ECGNet.

directional gated recurrent unit (GRU) are combined to
learn roubust spatial-temporal features of ECG. 2) design
an efficent attention model to caputure global information
that is a supplement to the CNN model. 3) demonstrate the
effectiveness and efficacy of our architecture on the ECG
dataset of PhysioNet/CinC Challenge 2021 [7].

2. Model Architecture

Fig. 1 presents the overall framework of our proposed
ST-ECGNet, which consisits of a CNN module for extract-
ing local spatial features, an attention module for capturing
global spatial features, and a Bi-directional GRU module
for extracting temporal features from ECG data.

2.1. CNN Module

In the proposed architecture, a CNN module is first ap-
plied to learn high-level feature representations of ECG
recordings. To facilite the optimisation of the CNN mod-
ule, a Residual Neural Networks similar to [6] was adopted
to add a short-cut connection that skips two convolutional
layers. The short-cuts construct direct connections be-
tween shallow layers and deep layers, enabling the Resid-
ual Neural Networks to solve the gradient vanishing prob-
lem that is commonly found during the training stage.
Specifically, the network consists of a convolutional layer
(Conv) followed by 16 residual blocks with two convolu-
tional layers per block. The width of filters is fixed with
16 in every convolutional layer. The number of filters per
convolutional layer starts with 32, and after the first four
residual blocks, it doubles at the first convolutional lay-
ers in every fourth residual block. Every second resid-
ual block subsamples its inputs by a factor of 2. In ad-

dition, the Batch Normalisation (BN) algorithm is adopted
for rescaling the output of each convolutional layer and a
rectified linear activation unit (RELU) as a nonlinear acti-
vation function. The dropout layers with a rate of 0.2 after
RELU were used to prevent overfitting. The detailed struc-
ture of the CNN module can be seen in Fig. 1. The CNN
module can be defined as a mapping function fcnn and the
extracted CNN feature is denoted as FCNN :

FCNN = fCNN (E; θCNN ) ∈ RD (1)

where θCNN and D denote the parameters of the CNN
module and the dimension of the output CNN feature, and
E is an input of multi-lead ECG recording.

2.2. Attention Module

In CNN, small-size convolution filters are commonly
used to extract local features while the global features have
been ignored. However, global features describe the input
as a whole that are important for the high-level classifica-
tion task. The global features represent the high-level con-
text information of the whole input while the local features
describe a set of local regions. Combining the global and
local features is able to improve the accuracy of the clas-
sification task. To capture more global information, larger
convolution filters have been employed, however, the com-
putational overhead gets heavier and the performance may
not improve remarkably in practice. In our proposed ar-
chitecture, we introduced an attention module to focus on
learning the most important parts of the whole input. As
shown in Fig. 1, the first layer of the attention module is
a tanh activation layer followed by a sigmoid layer and a
softmax layer. The attention module uses additive atten-
tion to capture global context information. The attention
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module can be defined as a mapping function fAT and the
extracted feature is denoted as FAT :

FAT = fAT (fCNN (E; θCNN ); θAT ) ∈ RDa (2)

where θAT denotes the parameters of the attention mod-
ule, and Da denotes the output dimension of the attention
module.

2.3. Bi-GRU Module

Spatio-temporal feature learning is of central impor-
tance for sequential data classification. In the proposed ar-
chitecture, CNN and attention modules are able to extract
spatial features. To further extract the temporal features
from the time series of spatial features, we introduced Bi-
GRU module into our framework. In our experiments, we
selected the Bi-GRU since it makes full use of the context
information from two directions, including forward direc-
tion and backward direction as shown in Fig. 1. We de-
fined the Bi-GRU module as a mapping function fGRU ,
the output feature as FGRU can be calculated as:

FGRU = fGRU (fAT (fCNN (E; θCNN ); θAT ); θGRU )
(3)

where θGRU denotes the parameters of the GRU module.

2.4. Training

We train separate models for 12 / 6 / 4 / 3 / 2 lead ECG
data. 6 / 4 / 3 / 2 lead ECG data are extracted from the
12-lead ECG data. We padded zeros into the ECG record-
ings which are shorter than 18 seconds. Our network took
this signal as input and output one prediction every 512
samples. We apply the class-aware binary cross-entropy
loss to optimise our network. The proposed framework
was trained using Adam stochastic gradient descent (SGD)
optimiser with random initialisation of the weights. The
training ran 30 epochs in total, the batch size was set to 32,
and the learning rate is set to 0.001. The learning rate was
reduced by a factor of 10 when the validation loss stopped
improving for three consecutive epochs.

3. Experiment

3.1. Dataset

The dataset was provided by the PhysioNet/CinC Chal-
lenge 2021. It includes twelve-lead ECG recordings from
six sources, including the CPSC database [8], the INCART
database [9], the PTB database [10, 11], the Chapman-
Shaoxing Database [12], the Ningbo Database [13] and
other databases [7, 14]. These databases include over
100,000 twelve-lead ECG recordings with over 88,000

ECGs shared publicly as training data, 6,630 ECGs re-
tained privately as validation data, and 16,630 ECGs re-
tained privately as test data. Since the test data is not public
available, we locally split 20% of training data as the val-
idation dataset and the other 80% as the training dataset,
and conduct the experiments on our locally split dataset.

3.2. Evaluation Metric

PhysioNet/CinC Challenges 2021 [7] has extended the
2020 Challenge scoring metric [14] to incorporate addi-
tional data and diagnoses. In total, there are five evalua-
tion metrics including the area under the receiver-operating
characteristic curve (AUROC), the area under the recall-
precision curve (AUPRC), accuracy (fraction of correct
recordings), macro F-measure, and the Challenge metric,
which assigns different weights to different misclassifica-
tion errors.

4. Results

In PhysioNet/Computing in Cardiology Challenge
2021, our entry was not officially ranked because our
source code encountered the error caused by the incom-
patible Docker Image. The Docker Image installed on the
official machines did not allow our code to access the GPU.
We had also found the same error on our machine and
solved this error, the solution to this error is that setting
the -runtime=nvidia flag explicitly when install the Docker
Image, i.e., using ’docker run -it -runtime=nvidia -v ...’ to
install the Docker Image.

We first conduct four ablation experiments to verify
the effectiveness of each component in the proposed ST-
ECGNet, including CNN module, attention module, and
Bi-GRU module. In our experiments, we compare differ-
ent methods using the 12-lead ECG data. We report the
experimental results on the validation dataset in Table 1.
Among all the compared architectures, the CNN module
solely performs much worst than the other architectures,
achieving 0.219 challenge metric score and 0.322 accu-
racy. This is because CNN module cannot extract suffi-
cient global spatial and temporal information that support
the accurate classification of ECG recordings. When we
augmented the CNN architecture with the attention mod-
ule or the Bi-GRU module, the performance greatly in-
creased. The gains came from the enhancement of the
final features that the attention module is able to intro-
duce more global information, and the Bi-GRU module
is able to introduce more temporal information into the
final features. Our ST-ECGNet consisting of three mod-
ules achieves the best performance (0.414 challenge metric
score and 0.481 accuracy). Second, we also report the per-
formance of ST-ECGNet on different multi-lead ECG data
in Table 2, from which, we observe that the ST-ECGNets
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Methods AUROC AUPRC Accuracy F-measure Challenge Metric
CNN 0.749 0.213 0.322 0.129 0.219

CNN + Attention 0.797 0.306 0.415 0.198 0.376
CNN + Bi-GRU 0.788 0.291 0.403 0.185 0.361

CNN+Attention+Bi-GRU 0.838 0.338 0.481 0.232 0.414

Table 1. The ablation experimental results on the local validation set drawn from the training set.

Leads AUROC AUPRC Acc F-m Challenge
12 0.838 0.338 0.481 0.232 0.414

6 0.838 0.340 0.482 0.233 0.417
4 0.836 0.354 0.495 0.240 0.427
3 0.836 0.361 0.505 0.251 0.434
2 0.838 0.348 0.484 0.234 0.419

Table 2. The experimental results of the proposed frame-
work for ECG data with different leads on the local valida-
tion set drawn from the training set.

trained on on different multi-lead ECGs achieve similar
performance, and among them the ST-ECGNet trained on
the 3-lead ECGs achieves the best performance (0.836 AU-
ROC, 0.361 AUPRC, 0.505 accuracy, 0.251 F-measure
score, and 0.434 challenge metric score). From the ob-
servation of our experimental results, it seems more leads
have not brought better performance.

5. Conclusion

In this paper, we proposed a novel deep ST-ECGNet for
detecting multiple cardiac disorders from the multi-lead
ECG data. ST-ECGNet integrates a CNN module for ex-
tracting local spatial features, a attention module for cap-
turing global spatial features, and a Bi-directional GRU
module for extracting temporal features, therefore it is able
to extract robust spatio-temporal features and enhances the
performance in automated ECG clinical diagnosis of mul-
tiple cardiac disorders.
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