Next: MFILT(1) Up: WFDB Applications Guide Previous: LWCAT(1) | On This Page |

**memse** transforms a real-valued
time series (from the specified *input-file*, or from the standard input if
*input-file* is specified as ‘‘-’’; *input-file* must be in text form) into a power
spectrum (on the standard output). **memse** is designed to be used in much
the same way as **fft**(1)
; it accepts the same input, produces output in the
same format, and accepts many of the same options used with **fft**.

Unlike
**fft**, which bases its spectral estimates on the discrete Fourier transform,
**memse** uses the maximum entropy (all poles) method, also known as autoregressive
(AR) spectral estimation. This method models the spectrum by a series expansion
in which the free parameters are all in the denominators of its terms;
hence each term may represent a pole (corresponding to infinite power
spectral density within an infinitely narrow frequency band). By contrast,
Fourier analysis models the spectrum by a series expansion in which the
free parameters are all in the numerators; hence each term in a Fourier
series may represent a zero. All-poles models are particularly useful for
analysis of spectra which have discrete peaks (in the terminology of optical
spectra, ‘‘lines’’).

In order to use **memse**, you should have some idea of the
order of the model you wish to use (i.e., the number of poles). Although
this may be any number up to the number of input points, the number of
poles generally should not exceed the square root of the number of input
points, and usually should be considerably less than that number. Large
numbers of poles lead to lengthy computations (much slower than the FFT)
in which accumulated roundoff error becomes a serious problem. This problem
may also occur if the length of the input series becomes excessive. The
recommended way to use **memse** is to begin by using **fft**, in order to estimate
the model order. Typically this should be a small multiple of the number
of peaks which you *believe* are present. Beware! **memse** will produce smooth
spectral estimates for whatever model order you choose -- and they may be
totally bogus if you choose incorrectly. Varying the model order can help
to weed out some spurious features, but use extreme care when interpreting
**memse** output given noisy input.

*Options* are:

**-b***low high*[*low high ...*]- Print
power in the specified bands. Each
*low*and*high*pair specifies the low and high frequency boundaries of the band of interest, in Hz. Multiple bands may be specified following a single**-b**option; only the last**-b**option has any effect. Also see**-s**below. **-f***frequency*- Show the center frequency
for each bin in the first column. The
*frequency*argument specifies the input sampling frequency; the center frequencies are given in the same units. **-h**- Print a usage summary.
**-n***n*- Produce exactly
*n*power estimates, evenly spaced in frequency from 0 up to half the input sampling frequency inclusive. The default depends on the length of the input series; it is designed to match*fft*’s defaults, to make it easy to compare outputs. You may wish to use values of*n*which are higher than the default in order to improve your estimates of the locations of sharp features in the spectrum; since this is not possible using**fft**, this feature is one of the main advantages of*memse*. **-o***n*- Use an
*n*th order model (i.e., up to*n*poles). Default: the square root of the number of input samples. **-P**- Generate a power spectrum (print squared magnitudes).
**-s**- Print power in a standard set of frequency bands of interest for HRV analysis.
**-w***window-type*- Apply the specified window
to the input data.
*window-type*may be one of: ‘Bartlett’, ‘Blackman’, ‘Blackman-Harris’, ‘Hamming’, ‘Hanning’, ‘Parzen’, ‘Square’, and ‘Welch’. The ‘Square’ window type is equivalent to using no window at all; this is also variously known as a rectangular or Dirichlet window. **-z**- Add a constant to each input sample, chosen such that the mean value of the entire series is zero.
**-Z**- Set the
mean value of the inputs to zero as for
**-z**, and detrend the series (set its mean first derivative to zero). This is equivalent to subtracting a best-fit (by least squares) line from the input data.

Please e-mail your comments and suggestions to `webmaster@physionet.org`, or post them to:

MIT Room E25-505A

77 Massachusetts Avenue

Cambridge, MA 02139 USA

Updated 28 May 2015