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Abstract 
This study was performed within the scope of the 

CinC-2000 challenge on detection and quantification of 
obstructive sleep apnea from single channel ECGs. 
Established statistical time domain heart rate variability 
(HRV) measures as well as parameters based on time 
delay embedding and correlation analysis are 
investigated for their diagnostic quality by means of 
receiver operating characteristics (ROC) analysis on a 
training set of 35 ECGs and cross validated on an 
independent tests set of equal size. Moreover, several 
feature combinations are evaluated with a second order 
polynomial classifier. The results indicate, that at least 
most of the information necessarj to recognize sleep 
apnea is contained in the ECG. Recognition rates up to 
93% for screening of apnea patients and 85.55% for 
minute by minute quantification are achieved. 

1. Introduction 
Obstructive sleep apnea (OSA) is a common health 

concern with an estimated prevalence of about 4 % in 
middle-aged males. It is associated with a wide range of 
health implications and increased cardiovascular 
morbidity and mortality. The gold standard in 
diagnosing OSA is polysomnography, an inconvenient, 
expensive and time consuming procedure which 
includes an overnight multi channel recording of 
respiratory and other vital parameters in a specialized 
sleep laboratory. To reduce the number of polysomno- 
graphies in patients without or with mild OSA, an 
effective and inexpensive screening with both, high 
sensitivity and specificity is highly desirable. 

The CinC Challenge 2000 aims at answering the 
question whether screening as well as quantification of 
OSA is possible based on information available from the 
electrocardiogram (ECG) alone. Many studies in recent 
years have hinted at this possibility. As soon as 1984, 
Guilleminault [ l ]  suggested a HRV pattern - ‘cyclic 
variation of heart rate’ (CVHR) - as screening tool for 
OSA. It consists of a phase of bradycardia followed by 
abrupt tachycardia, both mediated via the autonomic 
nervous system (ANS). 

The aim of this study is to assess the suitability of 
several established time domain HRV measures, which 

are known to reflect ANS control [2], and other HRV 
parameters based on time delay embedding and 
correlation analysis for screening and minute by minute 
quantification of OSA. In a first step, the quality of 
single features is investigated by means of ROC analysis 
and the best results are cross-validated by thresholding 
on an independent tests set. Moreover, several 
combinations of features are evaluated with a second 
order polynomial classifier. 

2. Material and methods 
The data set under investigation consists of 70 ECG 

signals (1 channel) of ca 8 h duration, recorded 
ovemight with a sampling frequency of 100 Hz and 
amplitude resolution of 12 bits. It is divided into two 
groups (training set and tests set) each containing 
records of 20 patients suffering from OSA, 5 borderline 
cases and 10 control probands. The record of a patient 
contains at least one hour with an apnea index of 10 or 
more, and at least 100 minutes with apnea during the 
recording. Controls have fewer than 5 minutes with 
apnea. All apneas are either obstructive or mixed. 
Hypopneas are also counted as apneas. More details can 
be found in [3]. 

In the training set, file by file information on the 
proband’s status (patienthorderlinekontrol) as well as 
minute by minute annotations on the occurrence of 
apnea at the beginning of this minute are available. The 
annotations were made by human experts on the basis of 
simultaneously recorded respiration signals. For the data 
in the tests set, no further information is given. 

The goal within the apnea screening task (AST) is the 
correct identification of the 20 patients and 10 controls 
in the tests set, (the 5 borderline cases are neglected). 
With respect to quantification of sleep apnea, a minute 
by minute classification of the data in the tests set is 
attempted. 

All parameters investigated within the scope of this 
study quantify heart rate variability and are calculated 
from the sequence of RR intervals of the ECG. In order 
to increase the time-resolution of the original data, the 
ECG signal is first interpolated using cubic splines and 
then resampled with 1000 Hz. A median highpass filter 
(width 501 ms) to reduce baseline wander is then 
applied. After R peak detection, a classification of QRS- 
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morphology [4] and -timing is performed to identify 
artefacts and ectopic beats and exclude them from 
further processing. Gaps in the RR-sequence resulting 
from rejected or missing beats are interpolated by means 
of a nonlinear algorithm described in [5] 

Data Analysis is performed on two different 
timescales (figure 1) In the apnea quantification task 
(AQT), successive segments of one minute in duration 
are constructed from the corrected series of RR intervals, 
and for each of this segments, one feature value is 
calculated. A smoothing median filter (width 13) to 
reduce the temporal variability of the results of adjacent 
segments is finally applied. 

In the AST, two different strategies are evaluated: 
Firstly, feature values are calculated from all data 
available for a patient i.e. the segment length is the total 
signal duration, and secondly, the median of the results 
obtained from the analysis of the one minute segments is 
used. In both cases we get one single number per patient. 
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Figure 1 : Data processing overview 

A part of the parameters under investigation are 
statistical time domain measures commonly used in 
HRV analysis [2], such as the standard deviation (SD) of 
all RR intervals between successive beats of normal 
origin (NN intervals), (SDNN), the absolute 
(NN5Ocount) and relative (pNN5O) number of 
successive pairs of NN-intervals that differ more than 50 
ms and the square root of the mean of the summed 
squares of differences between adjacent NN-intervals 
(RMSSD). For the ADT, moreover the SD of the mean 
of the NN intervals in all 5-minute segments of the 
recording (SDANN) and the mean of the SD of all NN 
intervals for all consecutive 5-minute segments (SDNN 
index) were calculated. 

In addition to those parameters, we investigated two 
features that have been proposed in EEG processing for 
brain-computer interfacing [6] and - to the best of our 
knowledge - are not commonly used in HRV analysis. 

Both features are derived from the time delay 
embedded corrected series of RR intervals. Given that 
the time segment of analysis contains N RR-intervals xi  
(i=l..N), embedding vectors Zi of the dimension D are 
constructed from values xi that are spaced t RR 
intervals apart: 

ii = ( X i  Xi+t  e . .  xi+(D- l ) . t  P 
In [6] ,  the vectors Zi directly form the columns of the 

embedding matrix X. In our realisation, we first calculate 
the mean vector 6 of all embedding vectors ii 

I N-(D-I).t 
+ 

m =  C X i  N - ( D - l ) . t  i=, 

and subtract it from each vecor 2; prior to the 
aggregation. So, the embedding matrix X is calculated 
according to 

The sorted eigenvalues li of the DxD-Matrix X X T  
are the basis for our parameters 

1, = EigenVdUeS(X . X T )  
where l i  >li+l  f o r i = l . . . D - l  

The magnitude of each eigenvalue is normalized with 
respect to the sum of all eigenvalues: 

;=I 

and the normalized maximal eigenvalue (NME) 

NME = A., 
Since, up to a multiplicative constant, the matrix 

X . X T  is identical to the covariance matrix of the 
vecors Zi, NME reflects the extension of the cluster of 
the embedded RR series in the direction of its largest 
extension relative to its ‘size’ in the directions of the 
other eigenvectors. 

The second parameter is derived from the Entropy H 
of the embedding space eigenspectrum 

serves as classification feature: 

D 

H = -Zai .i&) 
i=l 

It is calculated following [6] as 
EBF = 2 H  
and quantifies the stochastic ‘complexity’ (a very 

badly defined term) of the underlying time series. 
In this study, the values for the embedding Dimension 

D and time delay t were empirically set to 3. It must be 
noted, that the resulting numbers of NME and EBF do 
not reflect ‘true values’ in the sense of the theory of 
nonlinear dynamics, where an embedding dimension D 
sufficiently high for the underlying attractor must be 
guaranteed. Rather, they describe spatial properties of 
the cluster formed by the embedding vectors. For 
classification purposes, the most important question is, 
whether these values have different distributions in the 
case of apnea segments and non apnea segments, 
regardless of whether the values are correct in a 
theoretical sense. 
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Table 1: Classification rates for apnea screening (single features). In the ‘Thresh’ column, > indicates higher values - -  
for OSA, < indicates lower values. 

Analysis of total signal 
Training set 

(without bOl-bO5) 
Parameter Sens Spec Thresh 
NME 85 70 > 0.75 
EBF 75 
CBF 

NN5Ocount 75 
SDNN 60 
SDSD 70 
RMSSD 70 
SDANN 60 
SDNN-index 60 

pNN5O 90 

80 

70 
70 
70 
70 
70 
80 
70 

e 1.59 

< 0.23 
c 5600 
< 85.22 
< 48.7 
< 48.9 
e 48.3 

e 72.78 

The last HRV parameter investigated in this study is a 
correlation based feature (CBF). It is calculated within 
RR interval segments of 5 minute duration, which are 
shifted in increments of 1 minute over the whole signal. 

From each 5 minute segment, the central window of 
one minute duration is extracted and cross correlated 
with the surrounding 5 minute segment. The sum of all 
normalized correlation values that exceed the threshold 
0.45 yield the value of CBF. It aims to identify the 
cyclical variation of heart rate described in [ 13. 

To assess the quality of the calculated features with 
respect to the classification task, ROC curves were 
generated for each measure by plotting sensitivity 
against (1-specificity) for all possible decision 
thresholds. 

Moreover, different features were combined and the 
training set served to train a second order polynomial 
classifier which was used to reclassify the training set. 
For the best results, a validation was performed on the 
tests set. In the AQT, a smoothing of the classification 
results with a median filter was performed additionally 

3. Results 
The calculation of ROC curves is only possible for 

data of the training set, since the results for the tests set, 
received from CinC, contained for obvious reasons only 
the total number of correct classifications but no 
information on whether correctly positive or correctly 
negative. From the ROC plots, the threshold 
corresponding to the point of the curve closest to the 
upper right corner (0,l) was considered as value that 
achieves best separation between the two groups. Only 
for the best features in the training set, the results on the 
tests set were submitted to CinC because only a limited 
number of submissions was allowed for. 

Within the AST, the resulting sensitivity and 
specificity for the different parameters are given in table 
1. The left hand side shows the values for the analysis of 

Median of minute segments 
Training set I Tests 

(without b01-bO5) I set 

95 100 > 0.51 28/30 
Sens Spec Thresh 1 Total 

95 100 < 1.98 27/30 
95 100 > 5.58 28/30 
90 70 <0.224 
80 70 < 13 
55 60 < 53.9 
75 70 < 38.7 
75 70 < 38.4 

the total signal duration, the right hand side the results 
when the median of the results in 1 minute segments was 

used. Since according to the scoring rules of the CinC 
Challenge, the classification of the five borderline cases 
(files bOl-bO5) did not influence the classification result, 
they were omitted from the learning set in the AST. 
Combination of two features did not improve the 
classification result. Because of the small number of 
only 30 samples in the training set, we abstained from 
using a higher dimensional feature space. 

For the minute by minute classification in the AQT, 
the complete training set was used to assess the ROC 

Table 2: Classification rates for apnea quantification 
Training set Tests set 

Parameter Sens Spez Thresh Total 
NME 76.73 74.76 > 0.63 
EBF 81.33 72.05 > 1.85 
CBF 81.31 77.16 > 10.25 79.12 
pNN50 70.74 37.36 > 0.018 
NN5Ocount 70.76 37.36 > 1  
SDNN 68.57 58.93 > 50.99 
SDSD 52.99 48.17 < 30.93 
RMSSD 52.99 48.16 e 30.72 

Table 3: Classification rates for apnea quantification 
(selected feature combinations). 

Tests set 
Total 

Training set 
Sens Spec 

1 CBF/NME 72.22 87.38 

No Combination 

2 CBF/EBF 
3 CBFIRMSSD 
4 NMEISDNN 
5 EBFISDSD 
6 l + S D N N  
7 6 + E B F  
8 6+SDSD 
9 8 + NNSOcount 
10 7 + NN5Ocount 

74.11 
7 1.98 
74.96 
77.54 
73.36 
75.95 
72.09 
72.12 
76.35 

84.30 
89.34 
87.09 
80.65 
89.33 84.79 
88.28 
90.94 
9 1.23 85.55 
88.92 
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curves. The results obtained are given in table 2. 
Table 3 shows the classification rates achieved with 

the second order polynomial classifier for several 
selected feature combinations. 

4. Discussion and conclusion 
The best results in the AST (95% sensitivity, 100% 

specificity on the training set, up to 28/30 on the tests 
set) are obtained from the features CBF, NME and EBF 
(table 1). Interestingly, these results are only achieved 
when the median minute by minute values are 
considered. Calculation over the whole signal duration 
decreases the performance considerably, because the 
higher regularity of the cyclic variations of heart rate 
during periods of apnea is blunted by other fluctuations 
on this time scale. From the established HRV measures, 
pNN50 yields the best results (90% sensitivity, 70% 
specificity). Generally, lower, less complex heart rate 
variability is found in apnea patients. 

The best single parameter in the AQT was found to 
be CBF (table 2). With a sensitivity of 81,31%, 
comparable to that of EBF (81.33 %), it has better 
specificity (77.16%) than all other features and yields on 
average 79.12% correct classification on the tests set. 
Slightly worse results are obtained from the embedding 
based features, nevertheless their superiority to the 
established time domain HRV measures is clearly 
visible. Obviously, the comparatively regular structure 
of the RR intervals during apnea phases [ l ]  is better 
captured by these features. Especially CBF has the 
advantage that its magnitude is only based on similarity 
of the RR intervals on a short timescale (5 min) and 
therefore allows for variability of the CVHR pattern 
even in the same patient, largely independent from its 
amplitude and frequency. The same would be expected 
for NME and EBF, however only in the limit of a long 
data sequence and an embedding dimension sufficiently 
high. The higher specificity of CBF can be explained 
from the fact that it only detects sequences of several 
CVHR swings i.e. more pronounced apnea. 

It is interesting to note, that for the established HRV 
measures, the time scale of feature calculation has great 
influence on the ‘sign’ of the threshold decision: In table 
I, the OSA patients have lower values of SDNN 
whereas on a minute by minute basis (table 2), SDNN 
turned out to be even more reduced i n  OSA patients 
when apnea was absent, but relatively elevated during 
phases of apnea. From visual inspection, a quantification 
of the apnea phases using SDNN seems feasible within 
one patient, however the high inter-patient variability 
and the fact that SDNN is generally higher in healthy 
persons does not allow to use a fixed threshold. 

The combination of several features allows to further 
improve the results (table 3). Using three features - 
CBF, NME and SDNN - an average classification rate 

of 84.79% was achieved on the tests set, rising to 8 5 3  % 
for five features. Combining improved mainly 
specificity, probably reflecting the higher prevalence of 
non apnea phases in the training set. 

Generally, the temporal smoothing of the minute by 
minute values and classification results by means of a 
median filter yielded a considerable improvement of the 
classification rates. Best results were achieved using a 
width between 9 and 15, indicating that apnea phases 
often extend over several minutes. The filter 
successfully suppressed spurious short term trans- 
gressions of the decision threshold. 

Further improvements may be expected from 
combination of screening and quantification i.e. by 
attempting a quantification only on patients with a 
positive screening result. This may also lead to an 
improvement of quantification sensitivity which is 
probably too low ( < 80%) for practical use. Possibly, 
this results from missed phases of hypopnea. 

Since less is known about the patients in the data set, 
all conclusions made from the results obtained in this 
study must be taken with a grain of salt. However, 
especially in respect to screening of patients suffering 
from OSA, the results obtained are very promising and 
indicate, that much - if not all - of the information 
necessary to diagnose sleep apnea is contained in the 
ECG signal. Future work will have to include an 
investigation of stability and specificity in presence of 
other diseases known to affect the A N S  as well as 
different sleep stages. 
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