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Abstract 

We present an algorithm that automatically computes 

the QT interval duration from body surface 

electrocardiograms (ECGs). The algorithm consists of 

three processing steps: (1) PQ junction detection, (2) 

optimal lead selection, and (3) T-wave end detection. A 

previously developed algorithm for QRS detection was 

employed to detect the onset of each QRS complex, which 

was taken to be the PQ junction time. In the lead 

selection step, the ECG lead with the largest T-wave was 

automatically picked by the algorithm. For the T-wave 

end detection, the ECG signal in the estimated T-wave 

portion was transformed by means of an ECG curve 

length transform (LT); the T-wave end was determined 

using the resultant LT signal. The algorithm was applied 

to the first 30 seconds of 532 records in the PTB 

Diagnostic ECG Database. A score of 29.66 was 

achieved, which represents the RMS difference between 

the reference QT intervals and the algorithm’s results. 

 

1. Introduction 

 QT interval measurements from electrocardiograms 

(ECGs) are routinely used in clinical medicine. These 

measurements are usually done by expert readers using 

calipers on paper or e-calipers on computer screens. An 

automated methodology, if sufficiently accurate, is 

highly desirable. Although there is a rich literature 

documenting a wide variety of approaches to the problem 

[1-4], the clinical community and regulatory agencies are 

so far unconvinced of the reliability of automated QT 

interval measurements. 

With the work presented in this article we respond to 

the 2006 PhysioNet / Computers in Cardiology 

Challenge for QT interval measurements from body 

surface ECGs [5]. Our purpose is to pursue an accurate 

and reliable approach for fully automated QT interval 

detection. 

We propose a QT interval detection algorithm based 

on a curve length transform of the ECG signal. Our 

approach has the following advantages: a) it is insensitive 

to morphological variations of QRS complexes and T-

waves; b) it is insensitive to ECG baseline wandering; and 

c) it is computational efficient. 

2. Materials and methods 

2.1. Electrocardiogram data 

The data used in the challenge are the 549 recordings of 

the PTB Diagnostic ECG Database [6]. The recordings 

come from 294 subjects representing a broad range of ages 

and clinical pathologies. About 20% of the subjects are 

healthy controls. Each of these recordings contains 15 

simultaneously recorded ECG signals: the conventional 12 

leads and the 3 Frank (XYZ) leads. The signals are 

digitized at 1000 samples per second and have an 

amplitude resolution of 16 bits, spanning the range of 

±16.384 mV. The records are typically about two minutes 

in length, with a small number of shorter records (none 

less than 30 seconds). 

We down-sampled the first 30 s of each ECG signal of 

the original 549 records from 1000 Hz to 250 Hz, using 

the open-source software utility xform available from 

PhysioNet [7]. (The reason for down-sampling the original 

high resolution data is in order to directly employ a 

previously developed QRS onset detection algorithm that 

was optimized on ECG signals sampled at 250 Hz.) The 

amplitude resolution was kept unchanged. 

2.2. The algorithm 

The algorithm consists of three components: 1) PQ 

junction detection, 2) automatic lead selection, and 3) T-

wave end detection.  

2.2.1.  QRS onset detection 

Since the PQ junction time is equivalent to QRS onset 
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time, the PQ junction detection was treated as QRS onset 

detection in this study. QRS onset detection is performed 

with a previously developed QRS onset and duration 

detection algorithm [8]. This algorithm was applied to 

lead II of each record. 

2.2.2.  Lead selection  

Before detecting the end of the T-wave, a lead 

selection process is performed in order to find the 

optimal lead, in terms of T-wave prominence, for T-wave 

end detection.  

For each of the 15 leads, the P-QRS portion of each 

beat in the first 30 seconds was erased and the backward 

length transform was applied the same way as described 

in 2.1.3. The maximum L(n) value in each beat cycle was 

taken and averaged over all the beats. The leads were 

ranked by the average maximum L(n) value. The top 

ranked lead was selected as the lead for T-wave end 

detection.   

2.2.3.  T-wave end detection  

     The T-wave end detection algorithm consists of four 

basic steps, as shown in Figure 1. First, for a chosen ECG 

lead, a low-pass filter is applied to the ECG signal, x(n), 

resulting in the filtered signal, y(n). Second, according to 

the QRS onset produced by the QRS onset/duration 

detection algorithm, the filtered ECG signal in the 

estimated portion of P-wave and QRS complex is 

replaced with the last sample value prior to the P-QRS 

portion resulting in the signal y’(t). Third, a backward 

ECG curve length transform signal, L(n), was calculated 

from the P-QRS portion backward to the prior T-wave. 

Finally, T-wave end detection was performed using the 

L(n) signal.  
 

 

 

 

 

 

 

 

 
         Fig. 1: Diagram of the T-wave end detection algorithm. 

 

 

 A second-order recursive low-pass filter [9] was 

employed. The difference equation is 
 

    y(n) = 2y(n-1) – y(n-2) + x(n) – 2x(n-5) + x(n-10)   (1) 
 

The 3dB cut-off frequency for this filter is about 16 Hz 

for an ECG signal sampled at 250 Hz; the gain is 25 at 0 

Hz and the phase shift is 20 ms (or 5 samples at 250 Hz).  

     For each beat, we define the P-QRS portion of the 

cardiac beat as extending 160 ms prior to and 160 ms after 

the QRS onset time.  

     In the second processing step, this portion of the signal 

was replaced with the last sample value prior to the 

estimated P-QRS portion.  
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where, y(i) is the filtered ECG signal, y’(i) is the signal 

with the estimated P-QRS portion replaced, qk is the   QRS 

onset  time for each beat.  

     The curve length transform used in the algorithm is 

defined as:  
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where ∆yk = yk  - yk-1 and 0 < i ≤ N-w, N is the total 

number of the sample points and w << N. ∆t is the 

sampling period and therefore a constant, C = ∆t2. 

However, it can also be considered a non-linear scaling 

factor [8]. The window size, w, was empirically chosen as 

160 ms (40 samples); C was chosen as its original value, 

16 ms2.  

     The backward length transformed signal L(n) was 

calculated from the (replaced) P-QRS portion backward to 

the T-wave portion. The pseudo-code (in the C 

programming language) for processing one beat is as 

follows: 
 

for (i = qk-40, i > qk-1, i--) { 

         L(i) = LT(40, i) – L0;               (4) 

 } 
 

where qk and qk-1 are the QRS onset points for the current 

beat and previous beats, respectively; LT(40,i) is defined 

in (3); and L0 = w C , which is the horizontal line length 

value in the window. 

     Figure 2 shows the relationship between the backward 

length transform signal L(n) and the T-wave signal y’(n). 

The signal L(n) deviates from zero as it sweeps past the T-

wave in a backward fashion. This is because the T-wave 

portion has a longer curve length in a given processing 

window than a straight line. With a suitable criterion, the 

end of the T-wave can be determined by processing the 

signal L(n). The curve length transform helps avoid 

baseline wandering and can easily handle positive, 

negative, and/or biphasic T-waves. 

     The final task involved the reliable detection of the 

onset point, from a time-reversed order, of the L(n) signal. 

A tilted signal minimum search technique was employed 

in judging the onset of the L(n) signal. As shown in Figure 

3, for each beat, a line was calculated extending from the 

peak of the L(n) signal to the zero level at the following 
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      Fig 2: Relationship between the backward curve length  

                 transform signal L(n) and the T-wave y’(n). 

  QRS onset point, qk. Along the L(n) signal from the 

peak point to point at qk, the distance between the signal 

point and the linear line was calculated, and the time 

point associated with the maximum distance was taken as 

the L(n) backward onset time which corresponds to the 

T-wave end. This maximum distance search process can 

be viewed as a tilted signal minimum search. If we tilt 

the signal  such that the calculated line is horizontal, the 

minimum of the signal has the maximun distance to the 

line. 

 
Fig. 3: T-wave end detection (see text for details). 

As an additional quality control procedure, a reliability 

flag (RF), was defined for each beat to indicate whether 

the T-wave end detection for this beat is reliable or not. 

The RF has a binary value of 0 or 1 for unreliable or 

reliable, respectively.  For each beat, if the T-wave end 

determined by this algorithm is too short (less than 250 

ms) or too long (larger  than 550 ms) from the prior QRS 

onset, the corresponding RF is set to 0; otherwise its 

value is set to 1. This was based on the fact that QT 

intervals are rarely shorter than 250 ms or longer than  

550 ms.  

3.  Results 

     Figure 4 shows an example of the results from the 

automated lead selection process. Leads V3, V4 and V2 

were determined by the algorithm to be the top 3 leads 

most suitable for T-wave end detection. The 15 leads of 

ECG signals of the same record are shown in Figure 5. 

As can be seen, lead II has small T-waves and might not 

be suitable for T-wave end detection. 

 Figure 6 shows an example of the algorithm-produced  

 

Fig. 4: Example of the lead selection: V3, V4 and V2 were 

ranked the top leads most suitable for T-end detection. 

PQ junction and T-wave end labels, along with the 

intermediate signals that facilitated T-wave end detection. 

The top trace in Figure 6 is the original ECG of the 

selected lead, the middle trace is the low-pass filtered 

signal with the P-QRS portion replaced (starting from the 

second beat), and the bottom trace is the backward length-

transformed signal. Labels N and T are the PQ junction 

time and the calculated end of the T-wave, respectively. 

     Out of the total of 549 records in the database, 17 had a 

reliability flag value of zero for the second beat, meaning 

the T-wave ends were not reliably detected. Those 17 

records were excluded from further analysis. The PQ 

junction time and the T-wave end from the second beat of 

each of the remaining 532 records were submitted to the 

PhysioNet Challenge 2006 for scoring. A score of 29.66 

was achieved. The score for each entry is calculated as the 

RMS difference between the reference QT intervals and 

the corresponding QT intervals listed in the entry. 

4. Conclusion and discussion 

     A QT interval detection algorithm based on an ECG 

curve length transform has been developed. It consists of a 

previously published QRS onset detection algorithm, an 

automated lead selection step, and a new T-wave end 

detection algorithm. The proposed algorithm has several 

advantages: a) it has a clear physiological and 

mathematical basis; b) it easily handles positive, negative, 

and/or biphasic T-waves; c) it is insensitive to baseline 

wandering; d) the determination of the T-wave end does 

not need any threshold; and e) it is computationally 

efficient. 

     The lead selection process is important as the T-wave 

end can only be detected reliably in the ECG lead with 

discernable T-waves. However, QT intervals measurable   

from different leads are generally different because the 

myocardial repolarization activity is generally projected 

differently on different leads.  The lead determined by the  
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Fig. 5: Example of the original 15 leads of the ECG record. 

 

 
  
Fig. 6: Example of the QRS onset and T-wave end detection 

process. 

 

algorithm’s automated lead selection process is most 

often one of the V leads rather than Lead II even if the 

latter contains visible T-waves. As the Challenge 

preferred Lead II for QT interval measurement, one of 

the error sources might be due to this lead difference. 

Processing multiple leads for T-wave end detection may 

be necessary in order to reduce the error caused by the 

lead difference. 

There could also be systematic bias between the 

algorithm’s results and the reference.  Once the reference 

becomes published, such constant bias can be identified 

and compensated for.  

Beat classification prior to performing QT interval 

measurements may improve the performance by rejecting 

ectopic beats.  

Future work includes fine-tuning the algorithm with 

known QT interval reference datasets and multiple lead 

processing toward more consistent QT interval detection. 
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