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Abstract

In this study the use of Ramanujan transform (RT) for

the assessment of T-Wave alternans (TWA) is investigated.

The RT projects a signal on particular basis functions con-

stituted by Ramanujan sums (RS). The resulting compo-

nents highlight the presence of 1/q resonances, being q an

integer number. Thus, the transform is suitable for detect-

ing the typical 1/2 pattern of TWA.

After alignment, the successive T-waves are filtered us-

ing the Amplitude Adjusted T–Average method. For each

point of the obtained waveforms, the series of correspond-

ing T amplitudes is transformed using RT. Next, the quan-

tification of TWA is obtained through the RT coefficients.

Performances of the novel approach are evaluated on the

Computers in Cardiology Challenge dataset 2008. The fi-

nal score was encouraging (0.641), thus evidencing that

RT might be a valuable tool for the detection of TWA.

1. Introduction

T–Wave Alternans (TWA) is defined as a beat–to–beat

alteration in the repolarisation morphology that repeats ev-

ery other heart beat. The size of such alterations is small

(about tens of microvolts) and they are often buried into

noise. Therefore signal processing methods are most of-

ten necessary to enhance the signal and reveal their pres-

ence. A variety of methods have been proposed in the last

two decades to automatically detect and estimate TWA in

the ECG. A comprehensive and systematic discussion of

methods for TWA detection and analysis is reported in [1].

In this paper we introduce a novel approach for TWA

estimate based on the Ramanujan Transform (RT), which

decomposes a signal as a combination of Ramanujan Sums

(RS), each sum being characterized by sinusoids of integer

periodicity 1/q (with q = {1, 2, 3, . . . , N} and its mul-

tiples p/q being p and q co-primes. The RT projects the

original signal into patterns of finite periodicity: in the pe-

culiar case of q = 2, we have the 1 over 2 pattern typical

of TWA. The RS have been introduced as the fundamental

building blocks for arithmetical functions in number the-

ory [2]. They have been recently rediscovered for signal

processing [3] and for the analysis of biological data [4].

We investigated the performances of this novel approach

in the estimation of TWA using the dataset of the Comput-

ers in Cardiology Challenge 2008.

2. Methods

2.1. The Ramanujan transform

Let’s consider a N -samples signal, x(n), and its decom-

position as

x(n) =

N
∑

q=1

aqcq(n) (1)

where n is the discrete-time index, the

cq(n) =

q
∑

k=1;(k,q)=1

exp

(

2πj
k

q
n

)

(2)

is known as Ramanujan Sum (RS) and the aq’s are the

Ramanujan coefficients. The symbolism (k, q) which ap-

pears below the summation, denotes the greatest common

divisor of k and q (thus the equality (k, q) = 1 imposes

k and q to be co-primes). One may interpret the RS as

basis functions in which the original signal is projected:

these basis functions satisfy many suitable properties for

signal decomposition such as multiplicative and orthogo-

nality properties.

It is interesting to observe the analogy between (1) and

the discrete Fourier transform which is obtained by select-

ing

cq(n) = exp
(

2πj
q

N
n
)

. (3)

In (3) the basis functions are obtained by multiples of a

fundamental frequency 1/N defined by the signal length.

In (2) the basis functions are obtained by summation of
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components which are multiples of the same integer peri-

odicity q being q ∈ {1, 2, 3, 4, . . . ,∞}. Thus the transfor-

mation is suitable to highlight the integer periodicity of the

signal such as 1/2, 1/3 or 1/N patterns, whose relevance

is evaluated through the aq’s coefficients.

The computation of RS is obtained by

cq(n) = µ

(

q

(q, n)

)

φ(q)

φ( q

(q,n) )
(4)

where µ(·) is the Moebius function and φ(·) is the Euler

totient function. Finally, the evaluation of Ramanujan co-

efficients is due to Charmichael [5]

aq(n) =
1

φ(q)
lim

N→∞

1

N

N
∑

n=1

x(n)cq(n) (5)

2.2. Database

The database employed to assess the performances

of our method is the one provided for the Phys-

ioNet/Computers in Cardiology Challenge 2008. It con-

tains 100 multichannel ECG records sampled at 500 Hz

with 16 bits resolution over a ±32 mV range. The dataset

includes patients with myocardial infarctions, transient is-

chemia, ventricular tachyarrhythmias, and other risk fac-

tors for sudden cardiac death, as well as healthy controls.

It also contains 32 synthetic records obtained with 6 differ-

ent models. The challenge’s participants were not aware

of which records were real or synthetic; also if TWA was

present or not in a specific subject was undisclosed. For

further details on the dataset please refer to [6].

2.3. Signal pre-processing

The dataset did not contain annotations. Thus, each

record was firstly processed for QRS detection and clas-

sification using a refined version of the freely available

software OSEA [7]. The ECG signals were first high-

pass filtered to remove major baseline wander (3th or-

der Butterworth filter, cut off frequency 0.5 Hz). Then,

each lead was analyzed separately, for Q onsets detection.

Fiducial points obtained in different leads were merged if

closer than 150 ms. OSEA furnished a rough classification

of each beat. To refine it further and exclude remaining

ventricular beats, artifacts and labeling errors, we marked

as artifacts those beats which showed a maximal cross-

correlation value < 0.9 with an average template. The

cross-correlation was computed with a shift of up to ±100
ms, and the Q onsets positions were relocated accordingly.

The process was repeated iteratively until no change was

detected or a maximum number of iteration was reached.

We finally averaged normal beats and used this final tem-

plate to detect waves boundaries (QRS and T offsets; T

onsets were defined as QRS offsets + 40 ms).
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Figure 1. Computation of TWAscore on lead V4 of

record 79. a) Superimposition of filtered T–waves using

the AATA method; b)-d) modulus of Ramanujan coeffi-

cients for q = 2, 3, 4 and e) the resulting TWAscore. Note

that the score has an high value during the entire T duration

as expected in case of TWA.

Finally, a template for the T wave was built and used to

refine through cross-correlation the position of the T onsets

(±100 ms). Also in this case the process was repeated

iteratively. The temporal alignment of the T waves is at

the core of how we employed the Ramanujan transform.

The alignment procedure generates a series of aligned T

waves, T i
k(n) k = {1, 2, . . . , N} (being N the number of

T waves in the record), and a series of cross–correlation

values Ci
k between each T–wave and the template. Let’s

call T i
ave(n) the average T complex computed on the i-th

lead, being n the discrete time index (n = 0 corresponds to

the T onset). The average correlation was also computed

for each available lead Ci
a = E

[

Ci
k

]

.

2.4. T-Wave alternans quantification

The first step was the selection of the T-waves to be in-

cluded in the TWA computation. This was done through

the joint analysis of RR intervals and Ci
k values. In details,

we selected the longest sequence in which: i) two succes-

sive RR intervals did not differ more than a 10% in respect

to the mean global RR value; and ii) all the Ci
k were greater

than 0.9. These criteria guaranteed to generate a sequence

of similar T waves, with no T–wave missed (or incorrectly

added).
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To reduce the influence of noise in the estimation of

TWA amplitude, we designed the Amplitude Adjusted T–

Average (AATA) method, in which the aligned T i
k(n)’s

were modeled as amplitude–adjusted version of the T–

average:

T i
k(n) = ck T i

ave(n)+dk+w(n) = AAT i
k(n)+w(n) (6)

where w(n) is the additive noise term. For each T-wave,

the values of coefficients ck and dk are estimated in the

least square sense. The successive analysis was performed

on the sequence of AAT i
k(n) instead of the original T i

k(n).
For each time instant n, the series of corresponding

AAT i
k(n) amplitudes was transformed using the RT; the

modulus of the RT coefficients
∣

∣ai
q(n)

∣

∣ derived for q =
2, 3, 4 were further processed. It is worth noting that
∣

∣ai
2(n)

∣

∣ is an estimate of the TWA, while coefficients
∣

∣ai
3(n)

∣

∣ and
∣

∣ai
4(n)

∣

∣ are estimators of the superimposed

noise level. These coefficients were derived for each point

n of the T wave and for each lead i.
To measure the prevalence of 1/2 pattern in the series,

the following score was computed using the RT coeffi-

cients

TWAi
score(n) =

∣

∣ai
2(n)

∣

∣

∣

∣ai
2(n)

∣

∣ +
∣

∣ai
3(n)

∣

∣ +
∣

∣ai
4(n)

∣

∣

(7)

The score tends to 1 when the 1/2 pattern is dominant, i.e.
∣

∣ai
2(n)

∣

∣ >>
∣

∣ai
3(n)

∣

∣ +
∣

∣ai
4(n)

∣

∣. Conversely, it goes to 0
when the 1/2 pattern is negligible.

The amplitude of TWA was computed in a temporal

window (±16 ms) centered around the T–peak. In this

interval, the maximal values of 2
∣

∣ai
2(n)

∣

∣ was selected as

estimator of TWA amplitude. However, if the TWAi
score

was lower than 0.3 in correspondence of this maximum,

the measure was considered unreliable and TWA ampli-

tude was set to 0. This rule was included to avoid false

TWA detections in noisy ECG.

2.5. Merging information from different

leads

The computations described in the previous section

were repeated separately for the available leads (2,3 or

12 depending on the record). However, the Challenge re-

quired to provide a single score for each record. Therefore

information coming from different leads were merged to

define the final TWA estimates.

Noisy leads did not entered the merging process. A

lead was defined as noisy if Ci
a < 0.8 (see definition of

Ci
a in section 2.3) and excluded. Among the remaining

ones, those having TWAi
score > 0.8 were selected and

the maximum of 2
∣

∣ai
2

∣

∣ was elected as TWA estimator. If

none of the leads satisfied the last condition, the lead with

the largest TWAi
score was selected and the corresponding

2
∣

∣ai
2

∣

∣ used to measure TWA.
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Figure 2. Computation of TWAscore on lead V4 of

record 52. a) Superimposition of filtered T–waves using

the AATA method; b)-d) modulus of Ramanujan coeffi-

cients for q = 2, 3, 4 and e) the resulting TWAscore. The

score is low during the entire T duration. The probability

of TWA being present is low.

3. Results

Comparison of results obtained in presence/absence of

TWA are shown in Figure 1 and Figure 2, respectively.

Both the Ramanujan coefficient |a2| and the TWAscore

decrease when TWA is not present. We observed this be-

havior to be typical in the database.

During the Challenge we submitted 4 valid entries. The

best performance was obtained at the fourth submission:

our final score was 0.641 in the range [−1, 1].
After the end of the Challenge, the list of 32 records

with artificially generated TWA were published. The syn-

thetic record were generated using different ECG models

and superimposing various TWA levels, which were also

disclosed.

The comparison between reference values and our esti-

mates allowed a finer tuning of the algorithm parameters.

In particular, the threshold on TWAi
score (see section 2.5)

was decreased in order to include more leads in the se-

lection of the final TWA estimates. This was in favor of

selecting the same lead when different realizations of the

same ECG model were considered.

The results obtained on the synthetic records are shown

in Figure 3. We observed that our performances were

model dependent. In particular, in model A, B and E our

estimates were nearly correct (the slope of the line fitting
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Figure 3. Comparison between estimated and true TWA

amplitude on the records of model A,B,C,D and E

was 0.874), while in model C and D we under-estimated

the true TWA amplitudes. Interestingly, the level of this

underestimation was constant with ECGs coming from the

same model: in model E, the estimations were roughly 1/2
of the true values; in model C, they were 1/3 of the true

ones.

Generally, we were able to determine a correct ranking

of the members of each group, but the systematic underes-

timation in model C and D reduced the score on the overall

ranking. In addition, the underestimation in model C pre-

vents, for this group, the detection of TWA events with

amplitude < 6µV .

4. Discussion and conclusions

In this work we derived a TWA detector based on the

Ramanujan transform. The peculiar property of this trans-

formation allows the detection of 1/2, 1/3, 1/4 patterns

in the signal and it is therefore suitable for TWA detec-

tion. In fact, the prevalence of 1/2 rhythms over longer

1/3, 1/4, . . . , 1/N periodicity may be easily inferred from

the analysis of the Ramanujan coefficients, which we used

to derive an index of TWA events. In addition, it can be

shown that RS are constituted by integer number. There-

fore, computation of Ramanujan coefficients (equation 5)

is rather fast, efficient and easy-to-implement.

As expected, the output of RT may be affected by ECG

noise. Therefore, we design a pre-processing procedure

to reduce noise artifact and derive a robust TWA estimator.

T–waves were firstly aligned, and then filtered using AATA

method, in which the T’s were modeled as amplitude–

adjusted version of the gross T–average. This procedure

drastically reduces the superimposed noise and improve

the results.

A major problem of our approach was related to the

need for synthesizing the information coming from differ-

ent leads. In the Challenge, our philosophy was to esti-

mate the TWA amplitude as the maximum TWA estimates

among all the leads. However, from the analysis of syn-

thetic ECGs, a different strategy, which privileges the se-

lection of the same lead among groups, seems more prof-

itable. Unfortunately, we are not able to verify if this

change of strategy would have also improved the Chal-

lenge score on the real part of the database.

In conclusions, this work shows the potentiality of the

Ramanujan transform for the detection and the quantitative

evaluation of TWA episodes. Even if further improvements

are still needed to enhance the performances of the method,

the score we obtained is encouraging. Once the informa-

tion on the true ranking of the database will be available a

further improvement is expected.
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