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Abstract

Radial basis function Networks (RBFNs) have been suc-
cessfully employed in different Machine Learning prob-
lems. The use of different radial basis functions in RBFN
has been reported in the literature. Here, we discuss the
use of the q-Gaussian function as a radial basis function
employed in RBFNs. An interesting property of the q-
Gaussian function is that it can continuously and smoothly
reproduce different radial basis functions, like the Gaus-
sian, the Inverse Multiquadratic, and the Cauchy func-
tions, by changing a real parameter q. In addition, we dis-
cuss the mixed use of different shapes of radial basis func-
tions in only one RBFN. For this purpose, a Genetic Algo-
rithm is employed to select the number of hidden neurons,
width of each RBF, and q parameter of the q-Gaussian as-
sociated with each radial unit.

Network training is the search for optimal values of the
radius and the g-parameter of each radial basis Gaussian.
The minimum and maximum numbers of basis function in
the mid layer are defined a priori. The k-means cluster-
ing algorithm was employed to calculate each set of center
positions of the g-Gaussians. In training stage with a mul-
tivariate signal with n variable, the network inputs are the
n samples of each channel at once, except for the chan-
nel which part of the data is missing, which was used as
desired output.

Results from testing dataset were precise for good and
moderate quality signals. However, if channel which part
is missing is very noisy, the reconstruction, in general, was
not so good. This fact could be explained by the artificial
network training that is strongly dependent on the desired
output channel, getting to learn with certain efficiency even
when some of the inputs are noisy.

1. Introduction

In medical multivarite signals settings, we frequently
face the problem of misdetection of one or more compo-
nent signal due to various causes, including electronic fail-
ure and noise corruption. Therefore, the data in such sit-
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vation is incomplete. The method proposed here aims to
recover the missing data parts using Radial Basis Function
(RBF) Network.

RBF Networks are a class of Artificial Neural Networks
where RBFs are used to compute the activation of artifi-
cial neurons. RBF Networks have been successfully em-
ployed in real function approximation and pattern recog-
nition problems. In general, RBF Networks are associated
with architectures with two layers, where the hidden layer
employs RBFs to compute the activation of the neurons.
Different RBFs have been used, like the Gaussian, the In-
verse Multiquadratic, and the Cauchy functions [1]. In the
output layer, the activations of the hidden units are com-
bined in order to produce outputs. While there are weights
in the output layer, they are not present in the hidden layer.
Here we used g-Gaussian as function basis generalizing
the three previous basis function [2].

Choosing the parameters of the radial basis units means
to determine the number of hidden neurons, the type,
widths, and centers of the RBFs. In several cases, the first
three parameters are previously defined, and only the ra-
dial basis centers are optimized [3]. Besides the centers,
the number of hidden neurons [4], [5] and the widths [6]
can be still optimized. In general, all the radial units have
the same type of RBF, e.g., the Gaussian function, which
is chosen before the training.

A Genetic Algorithm (GA) is employed to select the
number of hidden neurons, center, type, and width of each
RBF associated with each hidden unit.

2. Methods

RBF are a class of real-valued functions where its out-
put depends on the distance between the input pattern and
a point c, defined as the center of the RBF. Moody and
Darken proposed the use of RBFs in Artificial Neural Net-
works (ANNs) inspired by the selective response of some
neurons [3]. ANNs where RBFs are used as activation
functions are named RBF Networks. The architecture and
the learning of RBF Networks are described in the next
sections.
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2.1.  Architecture

RBF Networks can have any number of hidden layers
and outputs with linear or nolinear activation. However,
RBF Networks are generally associated with architectures
with only one hidden layer without weights and with an
output layer with linear activation. Such architecture is
employed because it allows the separation of the training
in two phases: when the radial units parameters are de-
termined, the weights of the output layer generally can be
easily computed.

The most common RBF is the Gaussian function, which
is given by

¢ (d;j(x)) = e U™ (1

Neurons with Gaussian RBF present a very selective re-
sponse, with high activation for patterns close to the radial
unit center and very small activation for distant patterns.
2.2. The g-Gaussian Function

In this section we describe some theoretical aspects con-
cerning the g-Gaussian function. It is important to observe
that the g-Gaussian is not an alternative to the classic Gaus-
sian function but a parametric generalization of Gaussian
function. The main use of the g-Gaussian function is as
the probability distribution function that arises naturally
when we consider central limit theorem from sum of ran-
dom variables with global correlations [7]. The use of the
q-Gaussian function as a radial basis function in RBF Net-
works is interesting because it allows to change the shape
of the RBF according to the real parameter ¢ [8].

The use of the g-Gaussian function as a radial basis
function in RBF Networks is interesting because it allows
to change the shape of the RBF according to the real pa-
rameter q [8]. The g-Gaussian RBF for the radial unit j
can be defined as

;(d;(x))

where ¢; is a real valued parameter and the g-exponential
function of —d;(x) [9] is given by
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An interesting property of the g-Gaussian function is
that it can reproduce different RBFs for different values of
the real parameter q. For large negative numbers, the func-
tion is concentrated around the center of the RBF. When
the value of ¢ increases, the tail of the function becomes
larger.
In the next, Eq. 3 will be analysed for ¢ — 1, ¢ = 2 and
q = 3. For simplicity, the index j and the dependence on
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x will be ommitted in the following equations. For ¢ — 1,
the limit of the g-Gaussian RBF can be computed

1

lim e, ¢ = lim — 4)
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If we write z = (¢ — 1)d, then
.
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The limit of the function (1 + z)* is well know and con-

verges to e when z — 0. Thus,
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In this way, we can observe that the g-Gaussian RBF (Eq.

3) reduces to the standard Gaussian RBF (Eq. 1) when
q— 1.
Replacing ¢ = 2 in Eq. 3, we have
_ 1
' =5 +d @

i.e., the ¢g-Gaussian RBF (Eq. 3) is equal to the Cauchy
RBF for ¢ = 2.
When ¢ = 3, we have

—d 1

=7 ®)
(14 2d)"*

€q—

i.e., the activation of a radial unit with an Inverse Multi-
quadratic RBF for d is equal to the activation of a radial
unit with a g-Gaussian RBF (Eq. 3) for d/2.

Figure 1 presents the radial unit activation for the Gaus-
sian, Cauchy, and Inverse Multiquadratic RBFs. The acti-
vation for the g-Gaussian RBF for different values of q is
still presented. One can observe that the g-Gaussian repro-
duces the Gaussian, Cauchy, and Inverse Multiquadratic
RBFs for ¢ — 1, ¢ = 2, and ¢ = 3. Another interesting
property of the ¢-Gaussian RBF is still presented in Figure
1: a small change in the value of g represents a smooth
modification on the shape of the RBF.

In the next section, a methodology to optimize the RBF
parameters of the hidden units in RBF Networks via Ge-
netic Algorithms is presented.

2.3.  Selection of Parameters via Genetic

Algorithms

In the proposed methodology, a Genetic Algorithm
(GA) is used to define the number of radial units m, and
the parameters of each RBF related to each hidden unit
j = 1,...,m, i.e., the width, and parameter g for each
radial unit with g-Gaussian RBF.
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Figure 1. Radial unit activation in an one-dimensional space with ¢ = 0 and » = 1 for different RBFs: Gaussian (‘x’),
Cauchy (‘0”), Inverse Multiquadratic for \/ZQ)a: (‘+’), and ¢-Gaussian RBF with different values of ¢ (solid lines).

2.4. Codification

A hybrid codification (bynary and real) is employed in
the GA used in this work. Each individualts (z = 1,..., u)
is described by a vector (chromosome) with 2V elements,
where N is the size of the training set. The individual 7 is
defined by the vector
i =l ™ gv ] 9

q T2

q2
The width and g-parameter respectivelly given by the real
numbers r; and g;.

2.5. Selection

Tournament selection and elitism are employed here.
Elitism is employed in order to preserve the best individu-
als of the population. Tournament selection is an interest-
ing alternative to the use of fitness-proportionate selection
mainly to reduce the problem of premature convergence
and the computational cost [10].

2.6. Crossover

When the standard crossover is applied, parts of the
chromosomes of two individuals are exchanged. Two point
crossover is applied in each pair of new individuals with
crossover rate p.. In this way, individuals exchange all the
parameters of a radial unit each time.

467

2.7. Mutation

Two types of mutation are employed. The standard flip
mutation is employed with mutation rate p,, in the ele-
ments z;. When an element 7; or ¢; is mutated, its value
g; is changed according to

gj = gj exp (T7nN(/7 OO)) (10)
where T7,,, denotes the standard deviation of the Gaussian
distribution with zero mean employed to generate the ran-
dom deviation N (7, 00).

2.8. Training, validation, and test

For the network training it was used two groups: the
training dataset and the validation one, where the last was
used for network output error calculation. Both groups
were created with 2.000 patterns. The selection of this pat-
terns was done by calculating the Euclidian distance (Eq.
11) between one random pattern and all other patterns in
the signal. If the distance is greater than established thresh-
old, the pattern is accepted in the dataset. This procedure
is done in order to select the most distinct patterns as pos-
sibly.

d(pa;py) = Y _[pali) — pu(i))?

(1)
K2
For each multivariate signal it was trained one different
RBF Network. The parameters ¢ and r» were randomly
initialized between [0.1, 1.0] and [0.8, 2.8], respectively.
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Figure 2. Typical restoration using the proposed method.
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3. Results

It was obtained a total score of 25.52 for event 1 and
55.91 for event 2 in dataset "C”. An example of RBF net-
work restoration can be seen in Figure 2. It’s worth to note
that due to the need of large number of generations in GA,
the training stage is slow and results cannot be obtained in
real time.

4. Discussion and conclusions

This solution for signal restoration is based on a novel
method of prediction and classification process, being ap-
plicable to real signal monitoring. Despite this novelty as-
pect, results have shown its good performance for most of
the data. As mentioned before, low scores are obtained,
in general, for signals which channel with gap is of low
quality.

Taking into account the artificial intelligence techniques
employed, this method emerges as novel solution for signal
restoration problem. This still need to be evaluated in a
larger database and other contexts in order to explore the
potentiality of this method.
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