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Abstract

Radial basis function Networks (RBFNs) have been suc-

cessfully employed in different Machine Learning prob-

lems. The use of different radial basis functions in RBFN

has been reported in the literature. Here, we discuss the

use of the q-Gaussian function as a radial basis function

employed in RBFNs. An interesting property of the q-

Gaussian function is that it can continuously and smoothly

reproduce different radial basis functions, like the Gaus-

sian, the Inverse Multiquadratic, and the Cauchy func-

tions, by changing a real parameter q. In addition, we dis-

cuss the mixed use of different shapes of radial basis func-

tions in only one RBFN. For this purpose, a Genetic Algo-

rithm is employed to select the number of hidden neurons,

width of each RBF, and q parameter of the q-Gaussian as-

sociated with each radial unit.

Network training is the search for optimal values of the

radius and the q-parameter of each radial basis Gaussian.

The minimum and maximum numbers of basis function in

the mid layer are defined a priori. The k-means cluster-

ing algorithm was employed to calculate each set of center

positions of the q-Gaussians. In training stage with a mul-

tivariate signal with n variable, the network inputs are the

n samples of each channel at once, except for the chan-

nel which part of the data is missing, which was used as

desired output.

Results from testing dataset were precise for good and

moderate quality signals. However, if channel which part

is missing is very noisy, the reconstruction, in general, was

not so good. This fact could be explained by the artificial

network training that is strongly dependent on the desired

output channel, getting to learn with certain efficiency even

when some of the inputs are noisy.

1. Introduction

In medical multivarite signals settings, we frequently

face the problem of misdetection of one or more compo-

nent signal due to various causes, including electronic fail-

ure and noise corruption. Therefore, the data in such sit-

uation is incomplete. The method proposed here aims to

recover the missing data parts using Radial Basis Function

(RBF) Network.

RBF Networks are a class of Artificial Neural Networks

where RBFs are used to compute the activation of artifi-

cial neurons. RBF Networks have been successfully em-

ployed in real function approximation and pattern recog-

nition problems. In general, RBF Networks are associated

with architectures with two layers, where the hidden layer

employs RBFs to compute the activation of the neurons.

Different RBFs have been used, like the Gaussian, the In-

verse Multiquadratic, and the Cauchy functions [1]. In the

output layer, the activations of the hidden units are com-

bined in order to produce outputs. While there are weights

in the output layer, they are not present in the hidden layer.

Here we used q-Gaussian as function basis generalizing

the three previous basis function [2].

Choosing the parameters of the radial basis units means

to determine the number of hidden neurons, the type,

widths, and centers of the RBFs. In several cases, the first

three parameters are previously defined, and only the ra-

dial basis centers are optimized [3]. Besides the centers,

the number of hidden neurons [4], [5] and the widths [6]

can be still optimized. In general, all the radial units have

the same type of RBF, e.g., the Gaussian function, which

is chosen before the training.

A Genetic Algorithm (GA) is employed to select the

number of hidden neurons, center, type, and width of each

RBF associated with each hidden unit.

2. Methods

RBF are a class of real-valued functions where its out-

put depends on the distance between the input pattern and

a point c, defined as the center of the RBF. Moody and

Darken proposed the use of RBFs in Artificial Neural Net-

works (ANNs) inspired by the selective response of some

neurons [3]. ANNs where RBFs are used as activation

functions are named RBF Networks. The architecture and

the learning of RBF Networks are described in the next

sections.
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2.1. Architecture

RBF Networks can have any number of hidden layers

and outputs with linear or nolinear activation. However,

RBF Networks are generally associated with architectures

with only one hidden layer without weights and with an

output layer with linear activation. Such architecture is

employed because it allows the separation of the training

in two phases: when the radial units parameters are de-

termined, the weights of the output layer generally can be

easily computed.

The most common RBF is the Gaussian function, which

is given by

φj

(

dj(x)
)

= e
−dj(x) (1)

Neurons with Gaussian RBF present a very selective re-

sponse, with high activation for patterns close to the radial

unit center and very small activation for distant patterns.

2.2. The q-Gaussian Function

In this section we describe some theoretical aspects con-

cerning the q-Gaussian function. It is important to observe

that the q-Gaussian is not an alternative to the classic Gaus-

sian function but a parametric generalization of Gaussian

function. The main use of the q-Gaussian function is as

the probability distribution function that arises naturally

when we consider central limit theorem from sum of ran-

dom variables with global correlations [7]. The use of the

q-Gaussian function as a radial basis function in RBF Net-

works is interesting because it allows to change the shape

of the RBF according to the real parameter q [8].

The use of the q-Gaussian function as a radial basis

function in RBF Networks is interesting because it allows

to change the shape of the RBF according to the real pa-

rameter q [8]. The q-Gaussian RBF for the radial unit j
can be defined as

φj

(

dj(x)
)

= e
−dj(x)
qj

(2)

where qj is a real valued parameter and the q-exponential

function of −dj(x) [9] is given by

e−dj(x)
qj ≡

{ 1
(

1+(qj−1)dj(x)
) 1

qj−1

1 + (qj − 1)dj ≥ 0

0 otherwise

(3)

An interesting property of the q-Gaussian function is

that it can reproduce different RBFs for different values of

the real parameter q. For large negative numbers, the func-

tion is concentrated around the center of the RBF. When

the value of q increases, the tail of the function becomes

larger.

In the next, Eq. 3 will be analysed for q → 1, q = 2 and

q = 3. For simplicity, the index j and the dependence on

x will be ommitted in the following equations. For q → 1,

the limit of the q-Gaussian RBF can be computed

lim
q→1

e−d
q = lim

q→1

1
(

1 + (q − 1)d
)

1

q−1

(4)

If we write z = (q − 1)d, then

lim
q→1

e−d
q = lim

z→0

(

1 + z
)

−
d
z

lim
q→1

e−d
q = lim

z→0

(

(

1 + z
)

1

z

)

−d

(5)

The limit of the function (1 + z)
1

z is well know and con-

verges to e when z → 0. Thus,

lim
q→1

e−d
q = e−d (6)

In this way, we can observe that the q-Gaussian RBF (Eq.

3) reduces to the standard Gaussian RBF (Eq. 1) when

q → 1.

Replacing q = 2 in Eq. 3, we have

e−d
q =

1

1 + d
(7)

i.e., the q-Gaussian RBF (Eq. 3) is equal to the Cauchy

RBF for q = 2.

When q = 3, we have

e−d
q =

1
(

1 + 2d
)1/2

(8)

i.e., the activation of a radial unit with an Inverse Multi-

quadratic RBF for d is equal to the activation of a radial

unit with a q-Gaussian RBF (Eq. 3) for d/2.

Figure 1 presents the radial unit activation for the Gaus-

sian, Cauchy, and Inverse Multiquadratic RBFs. The acti-

vation for the q-Gaussian RBF for different values of q is

still presented. One can observe that the q-Gaussian repro-

duces the Gaussian, Cauchy, and Inverse Multiquadratic

RBFs for q → 1, q = 2, and q = 3. Another interesting

property of the q-Gaussian RBF is still presented in Figure

1: a small change in the value of q represents a smooth

modification on the shape of the RBF.

In the next section, a methodology to optimize the RBF

parameters of the hidden units in RBF Networks via Ge-

netic Algorithms is presented.

2.3. Selection of Parameters via Genetic

Algorithms

In the proposed methodology, a Genetic Algorithm

(GA) is used to define the number of radial units m, and

the parameters of each RBF related to each hidden unit

j = 1, . . . ,m, i.e., the width, and parameter q for each

radial unit with q-Gaussian RBF.
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