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Abstract

This work describes an algorithm for the robust detec-
tion of heart beats in multimodal physiologic data, devel-
oped for the PhysioNet/Computing in Cardiology Chal-
lenge 2014. Depending on which physiological signals
were available in the provided datasets, the proposed algo-
rithm uses a combination of the ECG, the continuous blood
pressure (BP) or the stroke volume (SV) signals. Due to the
temporal dynamics of the signal distortions, each record
was divided into several subsegments of the same length.
Different peak detection algorithms were applied to the dif-
ferent signals of each subsegment. Each signal was rated
with a quality index. It was used to identify one signal to be
used for the heart beat detection. The quality index was es-
timated from the signal statistics and the number of peaks
and their location within each subsegment. Once each sig-
nal of a subsegment was rated with the quality index, the
best rated signal was considered for the final peak detec-
tion. This identification procedure was then repeated for
every new subsegment.

In the challenge, the proposed method achieved an over-
all score of 90.04 % in phase I, 83.79 % in phase II and
84.31 % in phase III.

1. Introduction

In modern patient monitoring systems different physi-
ologic signals are recorded simultaneously. The quality
of one or more of these signals can be temporarily de-
creased by improper sensor placement, abrupt body move-
ments or environmental noise. The aim of the Phys-
ioNet/Computing in Cardiology Challenge 2014 is to im-
prove the detection of heart beats in such records. An al-
gorithm should identify such signal segments where a re-
liable heart beat detection is not possible. The robustness
of the detection is increased by utilizing or combining the
information of several different signals which are available
in a record.
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Figure 1. Typical BP and ECG signal morphologies.

2. Used material and methods

During the development of the heart beat detection al-
gorithm several specific methods and different databases
were used. This chapter describes their characteristics, ori-
gins and usages.

2.1. Signals used for heart beat detection

Each record of the training dataset included several
physiological signals. A short description signals utilized
for the heart beat detection and and their attributes is given
in the following.

The most obvious choice for heartbeat detection was the
Electrocardiogram (ECG). The specific, steep form of the
QRS-complexes allows an identification of the beats and
their differentiation from other distortions. For the precise
beat localization many different beat detection algorithms
were tested. The gqrs function written in C++ turned out
to be fitting in both, sensitivity and computation time [1].

The blood pressure (BP) signal was also included in
most of the training records. The representation of the car-
diac activity in the BP signal is not as steep and precise as
in the ECG signal and it appears with a short delay with re-
spect to the ECG’s QRS-complex (see figure 1). The wabp
was used for peak detection in the BP signals [1].

Stroke volume (SV) signals were available in a few
training records. The SV signal represents a continuous
measurement of the ejected blood volume. As the BP sig-
nal, the SV is directly linked to the cardiac activity. The
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Figure 2. Typical SV and ECG signal morphologies.

relatively noisy signal characteristics shown in figure 2 and
the varying delay with respect to the ECG signal compli-
cated the SV analysis. The SV signals were preprocessed
using a moving average filter with a window length of
333 ms and by taking the first derivative. A maximum peak
detector was used for detecting the peaks in the SV signal.

Other signal types provided in the training dataset
(e. g. electromyography (EMG), electroencephalography
(EEG), respiration) were not taken into account.

2.2. The challenge training dataset

The training dataset provided for the development of
the algorithms contained 100 ten minute records. All of
the records in this set were sampled at a frequency of
250 Hz. However, the sampling frequencies of the test
records ranged from 125 Hz to 1 kHz which needed to be
considered by the algorithms. For a verification of the de-
veloped algorithm, a set of reference QRS annotations was
provided.

2.3. Other datasets used for the develop-
ment of the algorithms

An additional training dataset was generated to in-
clude a broader spectrum of signal artefacts. The Mas-
sachusetts General Hospital/Marquette Foundation Wave-
form Database (MGHDB) is a collection of records of sta-
ble and unstable patients in critical care units, operating
rooms, and cardiac catheterisation laboratories, further de-
scribed in [2]. The database contains records of 250 pa-
tients (each 12 to 86 minutes) and includes a wide range of
physiologic health problems. The records are consisting of
up to three ECG leads and also up to three different BP sig-
nals. Thus, this database fitted the challenge requirements.
Due to the huge amount of data only manually selected
segments with low signal quality – each with a length of
10 minutes – were used for the analysis and development
of the algorithms.

2.4. The developed algorithm

To fit the challenge requirements the algorithm was de-
veloped using Octave. Due to the fact that the algorithm
was developed on a 32-bit system and also had to work
on the 64-bit system running on the challenges server, in-
stead of using the already implemented functions for read-
ing and writing annotation files in the PhysioNet format,
they were written manually in C++. Beside these neces-
sary functions, the work was focused on three ideas which
are explained in the following.

2.5. Data segmentation and beat detection

In a first step, each record was divided into several
shorter segments which were analysed separately. The
length of these segments was optimized using the training
dataset. Segment lengths were varied between 2 s and 10 s.
An overlap of 1 s was used between adjacent segments. Af-
ter the signal was segmented, the annotated heartbeats in
each segment were stored in arrays. It was examined how
often a beat was found in the ECG or BP signals. A win-
dow of 100 ms was used. If several signals are showing
heartbeats in one window the amount of detected beats is
saved together with the mean time of all beats in this win-
dow. Arrays of double, triple and more often appearing
beats are generated.

2.6. Parameters used for the quality esti-
mation of a signal

A central requirement for the development of the algo-
rithms was the signal quality estimation in each of the seg-
ments. Several quality parameters described in literature
were analysed and tested [3–5]. Finally, four parameters
with upper and/or lower boundary values were used to de-
termine the quality value of a signals segment (see table 1).
The quality of a signal was defined as high when all the pa-
rameter values were inside the strict and soft boundaries. A
high quality segment describes a signal with normal vari-
ance and regular annotations. If a signal segment satisfied
the strict but violated the soft boundaries, its quality was
defined as average. This signal was then only used if no
other signals was judged as high in this segment. If even
the strict boundary values were violated, the signal quality
was judged as low. This signal was not taken into account
in this segment.

Due to the fact, that the heartbeat frequency differs be-
tween 40 and 120 beats per minute, the fundamental fre-
quency (f1) of the signals was used to estimate the cor-
responding boundary values. This frequency provided a
rough estimation of the average heart rate even though it
could vary over the length of the record. The fundamental
frequency was calculated for each signal. To lower the in-
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Parameter low boundary up boundary
strict soft soft strict

# of beats 5.6 · f1 - - 2.4 · f1
RR-var. - - 0.03 0.09
Sig-var. 5 · 10−4 0.05 5 500
RR-int - 2/f1 0.5/f1 -

Table 1. Quality indices and their boundary values.

fluence of noise and baseline fluctuation the first derivative
of the signal was used, normalized to one and filtered by
a 5 Hz low-pass filter. The signal was split up into several
segments of 12 s length. For each segment a Fast Fourier
Transformation (FFT) was executed. The fundamental fre-
quency was estimated from the averaged frequency spec-
tra.

The quality parameters summarized in table 1 were used
for the following purposes:
• The number of annotations in a segment indicated if a
reliable peak detection was possible or if more or less than
the expected number of beats were detected.
• The variance of the peak distance, e. g. of the RR inter-
val, was a criterion for the robustness of the detection. For
a normal (healthy) record, the peak distance should have
a low variance. A high variance indicated one or more
missed beats. However, the variance could also increase
during arrhythmic episodes. Using the training datasets,
such arrhythmic episodes were considered for the defini-
tion of the strict boundary values.
• The signal variance was used as another quality indi-
cator. All signals were normalized to a total variance of
one before the variance was measured in each segment.
Low signal variances indicated segments where the signal
to noise ratio was very low or the signal was completely
switched off. High signal variances indicated external dis-
turbances.
• The peak distance, e. g. the RR interval length, was only
used as a soft quality criterion. If two adjacent beats were
too close or too far away from each other the signal quality
was judged as low. This parameter should detect segments
with one or more wrong annotations.

2.7. Recombination of detected beats

Before all beats detected in the different signals were
prepared for recombination, it was necessary to estimate
the delays between the ECG’s QRS-complex and the BP
or SV peaks. Therefore, only segments were taken into
account in which the ECG and the signal for which the
displacement was calculated were marked as good quality.
The calculated displacement was subtracted from all an-
notations in a record. If no suitable segments of sufficient
quality were identified to estimate the delay between the
ECG and the other signals, the default delay value was set

Table 2. Results for the challenge training dataset depend-
ing on different segment lengths.

length [s] Average Se Average +P
2 99.31 99.81
3 99.91 99.97
4 99.95 99.98
5 99.90 99.98
10 99.02 99.98

to 200 ms.
After all signals were prepared for the recombination,

their quality indices were used to determine which signal
was used in the current segment. In a first run, only those
segments with a good signal quality were taken into ac-
count. In a second run, possible missing parts were filled
up with average quality segments. All signal segments
marked as low quality were not used for the beat detec-
tion. In both runs, the detected beats and signals qualities
were used in the following relevance order to build the fi-
nal annotation vector. If the same beat was found in sev-
eral signals (e. g. in the ECG and the BP signals), and the
quality of the corresponding signal was defined as good
or average, these beat locations were used for the annota-
tion. If a beat was not found twice or more often, the beats
found in the ECG and BP signals were considered next.
In this case, the variance of the heartbeat intervals was es-
timated in order to decide which signal should be finally
used for the beat detection. If no other signal was rated
as high as or higher than the SV signal, the SV signal was
used. This low relevance of the SV signal was based on
their low quality observed in the training records.

3. Results

Table 2 shows the how the length of the segments af-
fected the detection results. Based on these results, the
records were divided into segments with a length of 4 s.
Taking into account an overlap of 1 s, a 10 min record con-
sisted of 200 segments.

The algorithm used in each phase of the challenge and
the octave sample entry were evaluated using the MGH
training dataset. The averaged results are shown in table 3.

The results achieved in the training dataset and in phases
I, II and III of the challenge are presented in table 4. The
results of the octave sample entry are shown for compari-
son.

4. Discussion

Using the training dataset which was provided for the
challenge, a high detection quality was achieved when
compared to the results obtained in the test datasets of the
different challenge phases. Hence, an additional training
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Table 3. Results for the MGH dataset.
Algorithm Se (%) P+(%)

Phase 1 81.96 91.08
Phase 2 95.78 96.73
Phase 3 96.92 96.79

Octave sample entry 65.57 81.74

Table 4. Results for the different challenge test datasets.
Dataset Results Octave sample entry
Training 99.96 99.61
Phase 1 90.04 88.89
Phase 2 83.79 83.74
Phase 3 84.31 79.28

datasets was defined from the MGH database. The aim was
to include more records with low signal quality and dif-
ferent signal properties. Records from the MGH database
were selected in a way that they provided disturbances as
well as arrhythmic signal data. Comparing the results of
the sample entry in octave in the MGH dataset with its re-
sults in the test dataset, it can be assumed that the records
of the MGH traning dataset more difficult than the offi-
cial test datasets. Comparing the results of the developed
algorithm the opposite assumption has to be made. This
contradiction can be explained by the fact that some of
the quality indices were (over)fitted to the MGH training
dataset. Hence, the training dataset did not sufficiently rep-
resent the signal qualities, possible artefacts are arrhythmic
episodes contained in the three test datasets (phase I-III).

The developed algorithms were extended during the dif-
ferent phases of the challenge which explains the different
results in the MGH training dataset. Although the quality
was improved during the different phases using the MGH
training dataset, the detection quality decreased on the dif-
ferent test datasets.

For the further development of the algorithms, more or
other parameters describing the quality of different signals
will be considered. In addition, more training records with
different signal and quality properties are required to be
able to respond appropriately in different scenarios.

5. Conclusion

An algorithm for the robust detection of heart beats in
multimodal data has been developed. The algorithm is
based on open source software and makes use of two pub-
lic available beat detectors. It considers ECG, BP and SV
signals contained in a record, divides them into shorter seg-
ments and determines the signals quality in each segment
based on different parameters. Information about the de-
tected beats in each signal was combined in order to esti-
mate their correct positions.

For the final phase III, the algorithm achieved a place
in the midfield of the challenges (average score for phase
III: 84.31 %). Further improvements of the existing algo-
rithm are required for a more reliable beat detection. This
could be achieved using more complex training data and
extended algorithms.
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