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Abstract 

Sepsis is a serious medical condition caused by the 

body's response to an infection. Early prediction and 

treatment of sepsis are critical. In response to the 

PhysioNet/CinC Challenge 2019, we developed an 

algorithm for early prediction of sepsis. Three datasets 

provided by the challenge are from ICU patients in three 

separate hospitals, two of which are publicly available to 

the participants, but the third is hidden and used for 

scoring. Data are highly unbalanced and contain many 

missing values. Each patient’s data comprises hourly 

collected samples of 40 features. We preprocessed the data 

by a plausibility filter eliminating the outliers, forward 

filling of the missing data and replacing the remaining by 

population mean, and standardization of the numerical 

data. We developed an ensemble of bagged decision trees 

with a highly unbalanced misclassification cost to predict 

the sepsis for each sample of features in a patient.  The 

classifier was trained on the first hospital dataset and 

validated on the second hospital dataset. A total of 15 

important features and a set of hyperparameters were 

selected in an iterative training approach. Our team 

(AlgTeam, ranking 39) submitted nine entries for 

evaluation on the subset of the hidden data and selected 

the entry with highest utility score which resulted in the 

final utility score of 0.24 on the full test dataset.  

 

 

1. Introduction 

According to the Sepsis-3 guidelines [1], “sepsis is a 

life-threatening organ dysfunction caused by a 

dysregulated host response to infection”. This organ 

dysfunction is represented by two-point or more increase 

in the Organ Failure Assessment (SOFA) score. It is also 

discovered by records of clinical suspicion of infection in 

hospital either by ordering blood cultures or IV antibiotics. 

Early prediction and treatment of sepsis are critical for 

reducing the mortality and morbidity, as well as the 

healthcare costs. Only in United States, more than 1.5 

million cases of sepsis occur per year [2]. The significance 

of early prediction of sepsis cases and its impact on the 

survival rate of the patients has been presented in several 

papers [3-5]. Prompt identification of sepsis is 

recommended by clinical practice guidelines [6,7] and 

supported by studies suggesting that early treatment of 

sepsis reduces the mortality rate [3,8]. 

Although clinicians have proposed new definitions for 

sepsis, early detection and treatment of sepsis is still an 

issue and the limits of early detection are unknown. In 

order to address these issues, the organizers of the 

PhysioNet/Computing in Cardiology Challenge 2019 [9] 

set up a competition to develop automated open-source 

algorithms for the early detection of sepsis from clinical 

data. A utility score was defined by the challenge 

organizers, rewarding early predictions of sepsis and 

penalizing too early/late/failing prediction of sepsis or 

false sepsis prediction in a non-sepsis patient. For detailed 

description of the challenge, refer to the publication by the 

challenge organizers [9].  

In response to this challenge, we developed an 

algorithm for early prediction of sepsis. We preprocessed 

the data by a plausibility filter, imputing, and 

standardization of the numerical data. A classifier modeled 

by an ensemble of bootstrap-aggregated decision trees with 

a highly unbalanced misclassification cost function was 

developed to predict sepsis for each time sample of patient 

features.  The classifier was trained on the first hospital 

dataset and validated on the second hospital dataset. 

Important features and hyperparameters were selected in 

an iterative training approach.  

The rest of this paper is organized as follows. In Section 

2, we describe the method and material including the 

algorithm overview, database, data preprocessing, 

classifier, and training and feature selection. Section 3 

provides the results. Discussion and conclusions are 

presented in section 4. 

 

2. Method and Material 

2.1. Algorithm Overview 

Figure 1 shows the block diagram of the algorithm. 

Multi-feature record of each patient consists of several 

samples of features typically collected every hour. 

Features were preprocessed in several steps including the 

outlier elimination, combination of the correlated 

variables, missing value imputation, and standardization. 

The preprocessed records were then split into training 
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and validation datasets. A tree-bagger classifier was 

trained using the training dataset and the important features 

and the hyperparameters were selected in an iterative 

approach until the best score was achieved. The classifier 

was validated by validation dataset and the model was 

submitted to evaluate the score of a subset of the hidden 

dataset. The classifier with the best utility score was 

selected for evaluation of the final utility score on the full 

test dataset. 
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Figure 1. Block diagram of the algorithm consisting of thje 

data preprocessing (left branch) and the evaluation 

procedure (right branch).  

2.2. Database 

The challenge provided three datasets from ICU 

patients in three separate hospitals. Datasets from two 

hospitals (A and B) were publicly available to the 

challenge participants and used in the algorithm training. 

Datasets A and B contain 20,336 and 20,000 patient 

records, respectively. The third dataset was hidden and 

used for scoring and evaluation of the algorithm for the 

final utility score. The complications were the highly 

unbalanced data (only 1.8% of the patient records showed 

sepsis) and high number of missing values (up to 99.8% in 

some features) in public databases. 

Each file in the datasets contains the records of one 

patient during the stay in ICU where samples were 

collected hourly, generating several time-series features. 

These features consist of three groups of vital signs (n = 8), 

laboratory values (n = 26), and demographic features (n = 

6). Some features show a high level of missing values.  

Binary categorical features are gender, Unit1, and 

Unit2. Other features are numerical. Table 1 shows a list 

of the features in each group, their missing percentage, 

preprocessing information, and the statistics.  

 

2.2.1. Data Preprocessing 

The patient records were preprocessed before being 

used in development of the classifier model. The first step 

was applying a plausibility filter to each feature. A range 

of valid values for each feature was defined based on its 

actual distribution and the knowledge in the literature. Any 

value outside this range was assumed as outlier and marked 

missing for imputation. Table 1 presents the low and high 

values of the plausibility range for each feature.  

Categorical features Unit1 and Unit2 are the 

administrative identifiers for ICU and are mutually 

exclusive since the patient was either in MICU or SICU. In 

case of missing values, MICU (Unit1) was assumed.  

There is large number of missing values in some 

features. This percentage ranges from 0% in some 

demographic features including age, gender, 

HospAdmTime, and ICULOS, to 99.8% in 

Bilirubin_direct. Percentage of missing values for each 

feature is shown in Table 1. Missing values were imputed 

by forward filling if a value was available in past. The 

remaining missing values with no previous values were 

replaced by the population mean, calculated from the 

public datasets A and B after applying the plausibility 

filter. Numerical values were then standardized by 

reduction of the median values, divided by the standard 

deviation. The statistical values for each feature after 

preprocessing are shown in Table 1. 

Figure 2 shows an example of data from a patient after 

preprocessing the features and combining Unit1 and Unit2 

features. The preprocessed features are the imputed and 

standardized time series samples. In this example there are 

39 features varying in a 54-hour time interval. Most 

features are missing in the early hours of data collection 

and are imputed with the population mean values. As 

observed, some features are collected rarely and imputed 

by previous values while some are collected frequently.  
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Table 1. Features in each group and their mean, median, 

percentage of missing values, and the low and high values 

in plausibility range after preprocessing. 

 

 Features 
Missing 

(%) 

Plausibility 
Mean Median SD 

Low High 

V
it

a
l 

si
g

n
s 

HR 9.9 10 300 84.6 83.5 17.3 

O2Sat 13.1 60 100 97.2 98 2.7 

Temp 66.2 32 42.2 37 37 0.8 

SBP 14.6 40 280 123.8 121 23.2 

MAP 12.5 0 300 82.4 80 16.3 

DBP 31.3 20 130 63.7 62 13.6 

Resp 15.4 5 60 18.8 18 5 

EtCO2 96.3 0 150 33 33 8 

L
a

b
o

ra
to

ry
 v

a
lu

es
 

BaseExcess 94.6 -20 20 -0.7 0 4.2 

HCO3 95.8 0 50 24.1 24 4.4 

FiO2 91.7 0 1 0.5 0.5 0.2 

pH 93.1 6 8 7.4 7.4 0.1 

PaCO2 94.4 0 200 41 40 9.3 

SaO2 96.5 0 100 92.7 97 10.9 

AST 98.4 0 400 64.5 35 73 

BUN 93.1 0 500 23.9 17 20 

Alkalinephos 98.4 0 250 82.8 71 43 

Calcium 94.1 0 20 7.6 8.3 2.4 

Chloride 95.5 75 145 105.8 106 5.8 

Creatinine 93.9 0 10 1.4 0.9 1.4 

Bilirubin_direct 99.8 0 50 1.8 0.4 3.7 

Glucose 82.9 0 1000 136.9 127 51.3 

Lactate 97.3 0 100 2.6 1.8 2.5 

Magnesium 93.7 0 10 2.1 2 0.4 

Phosphate 96.0 0 12 3.5 3.3 1.4 

Potassium 90.7 1 10 4.1 4.1 0.6 

Bilirubin_total 98.5 0 50 2.1 0.9 4.3 

TroponinI 99.0 0 200 8 0.3 22.7 

Hct 91.1 10 70 30.8 30.3 5.5 

Hgb 92.6 2 22 10.4 10.3 2 

PTT 97.1 0 250 41.2 32.4 26.2 

WBC 93.6 0 50 11.2 10.3 5.4 

Fibrinogen 99.3 0 800 280.2 248 137.5 

Platelets 94.1 5 1500 196 181 103 

D
em

o
g

ra
p

h
ic

s 

Age 0.0 0 150 62 64 16.4 

Gender 0.0 0 1 0.6 1 0.5 

Unit1 39.4 0 1 0.5 0 0.5 

Unit2 39.4 0 1 0.5 1 0.5 

HospAdmTime 0.0 none none -56.1 -6 162.3 

ICULOS 0.0 1 none 27 21 29 

 

 

Figure 2. An example of a patient’s preprocessed data with 

39 features varying in the 54-hour time interval. 

2.3. Classifier 

An ensemble of bagged decision trees was developed 

as the classifier with binary outputs: sepsis or no-sepsis. 

For each sample in time, the trained model accepts the 

important features as input. The ensemble consists of 100 

decision trees. Due to the highly unbalanced nature of the 

data, a misclassification cost ratio of 1 to 37 was defined 

for no-sepsis versus sepsis. Maximum number of splits is 

set to 100 with minimum leaf size of 3.  

Figure 3 displays an example of an ensemble of 100 

decision trees. 

 

Figure 3. Example of one decision tree.  

 

2.3.1. Training and Feature Selection 

Our predictive model was trained using the features 

selected from dataset A. Important features and optimized 

hyperparameters were selected in an iterative optimization 

approach of the utility score. A total of 15 features were 

selected: HR, Temp, MAP, Resp, BaseExcess, FiO2, 

BUN, Calcium, Creatinine, Hct, WBC, Platelets, Unit1or2, 

HospAdmTime, ICULOS. 

100 trees 
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Multi-feature sample of the data in each patient at each 

time was used as the single input to the classifier, resulting 

in a single binary output of sepsis or no-sepsis. Up to three 

initial samples in each patient with excessive missing 

values were discarded from analysis. Dataset B was used 

to validate and fine-tune the optimized model.  

 

3. Results 

Our team participated in the challenge with the team 

name AlgTeam. We submitted one successful entry in the 

unofficial phase and a total of nine successful entries in the 

official phase. We selected the entry with the highest utility 

score as the final entry for running on the full test dataset.  

The final utility score on the full hidden dataset was 0.24 

ranking 39. Execution time was 14 hours and 23 minutes 

on test set A. 

Table 2 shows the detailed results of running the model 

in our selected entry on each test dataset (A, B, or C), 

including the utility score, AUROC, AUPRC, accuracy, 

and the F-measure. 

 

4. Discussion and Conclusions 

In order to compare the performance of our algorithm 

with the other teams participated in the challenge, we 

calculated the average results for all ranked teams where 

their average utility score was 0.185 on the full test set 

(Table 3).  

Compared to the other teams’ average results, our 

algorithm showed high utility score on both datasets A and 

B, while its score on dataset C was close to the average. 

However, our utility score for dataset B was much lower 

than dataset A. One reason is that high correlation was 

observed between the results from the official submissions 

and the dataset A, hence we focused on training our 

algorithm by dataset A only and validated it by dataset B. 

If we had the prior knowledge that the official phase test 

subset was a subset of the dataset A and not from another 

hospital, and the full test dataset includes a subset of 

dataset B as well as another hospital, we would have 

trained and validated our algorithm on both datasets A and 

B. We also trained our algorithm using the single time 

samples of the features and did not regard the correlation 

with previous samples. This have probably caused the low 

score from dataset C. Adding the handcrafted correlation 

features or using a sequence model such as LSTM may 

improve the performance. 

Also compared to the other teams’ average results, our 

AUROC measures for all datasets were higher, our 

AUPRC were higher for dataset A and similar for the other 

two datasets, our accuracy was higher for all datasets, and 

our F-measure was higher for datasets A and B, but 

comparable for dataset C.  

Table 2. Results of running our selected model. 

 Score AUROC AUPRC Accuracy F-measure 

Set A 0.335 0.764 0.084 0.871 0.139 

Set B 0.268 0.768 0.055 0.912 0.118 

Set C -0.226 0.741 0.033 0.754 0.039 

 

Table 3. Other teams’ average results.  

 Score AUROC AUPRC Accuracy F-measure 

Set A 0.267 0.586 0.058 0.819 0.108 

Set B 0.211 0.598 0.053 0.859 0.098 

Set C -0.219 0.581 0.035 0.762 0.041 
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