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Abstract.

Objective: Vast 12-lead ECGs repositories provide opportunities to develop new machine

learning approaches for creating accurate and automatic diagnostic systems for cardiac

abnormalities. However, most 12-lead ECG classification studies are trained, tested, or

developed in single, small, or relatively homogeneous datasets. In addition, most algorithms

focus on identifying small numbers of cardiac arrhythmias that do not represent the

complexity and difficulty of ECG interpretation. This work addresses these issues by

providing a standard, multi-institutional database and a novel scoring metric through a

public competition: the PhysioNet/Computing in Cardiology Challenge 2020.

Approach: A total of 66361 12-lead ECG recordings were sourced from six hospital

systems from four countries across three continents. 43,101 recordings were posted publicly

with a focus on 27 diagnoses. For the first time in a public competition, we required teams

to publish open-source code for both training and testing their algorithms, ensuring full

scientific reproducibility.

Main results: A total of 217 teams submitted 1395 algorithms during the Challenge,

representing a diversity of approaches for identifying cardiac abnormalities from both

academia and industry. As with previous Challenges, high-performing algorithms exhibited

significant drops (/ 10%) in performance on the hidden test data.

Significance: Data from diverse institutions allowed us to assess algorithmic

generalizability. A novel evaluation metric considered different misclassification errors for



different cardiac abnormalities, capturing the outcomes and risks of different diagnoses.

Requiring both trained models and code for training models improved the generalizability

of submissions, setting a new bar in reproducibility for public data science competitions.

1. Introduction

Cardiovascular disease is the leading cause of death worldwide [1]. Early treatment can

prevent serious cardiac events, and the most important tool for screening and diagnosing

cardiac electrical abnormalities is the electrocardiogram (ECG) [2], [3]. The ECG is a non-

invasive representation of the electrical activity of the heart that is measured using electrodes

placed on the torso. The standard 12-lead ECG is widely used to diagnose a variety of

cardiac arrhythmias such as atrial fibrillation and other cardiac anatomy abnormalities such

as ventricular hypertrophy [2]. ECG abnormalities have also been identified as both short-

and long-term mortality risk predictors [4], [5]. Therefore, the early and correct diagnosis

of cardiac ECG abnormalities can increase the chances of successful treatments. However,

manual interpretation of ECGs is time-consuming and requires skilled personnel with a high

degree of training.

The automatic detection and classification of cardiac abnormalities can assist physicians

in making diagnoses for a growing number of recorded ECGs. However, there has been

limited success in achieving this goal [6], [7]. Over the last decade, the rapid development

of machine learning techniques have also included a growing number of 12-lead ECG

classifiers [8]–[10]. Many of these algorithms may identify cardiac abnormalities correctly.

However, most of these methods are trained, tested, or developed in single, small, or

relatively homogeneous datasets. In addition, most methods focus on identifying a small

number of cardiac arrhythmias that do not represent the complexity and difficulty of ECG

interpretation.

The PhysioNet/Computing in Cardiology Challenge 2020 provided an opportunity to

address these problems by providing data from a wide set of sources with a large set of cardiac

abnormalities [11]–[13]. The PhysioNet Challenge is an initiative that invites participants

from academia, industry, and elsewhere to tackle clinically important questions that are

either unsolved or not well-solved. Similar to previous years, the Challenge had both an

unofficial phase and an official phase that ran over the course of several months. PhysioNet

co-hosts the Challenge annually in cooperation with the Computing in Cardiology conference.

The goal of the 2020 PhysioNet Challenge was to identify clinical diagnoses from 12-lead

ECG recordings.

We asked participants to design and implement a working, open-source algorithm

that can, based only on the clinical data provided, automatically identify any cardiac

abnormalities present in a 12-lead ECG recording. Like previous years, we facilitated
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the development of the algorithms through the Challenge but did little to constrain the

algorithms themselves. However, we required that each algorithm be reproducible from the

provided training data. The winners of the Challenge are the team whose algorithm achieved

the highest score for recordings in the hidden test set. We developed a new scoring function

that awards partial credit to misdiagnoses that result in similar treatments or outcomes as

the true diagnosis or diagnoses as judged by our cardiologists because traditional scoring

metrics, such as common area under the curve (AUC) metrics, do not explicitly reflect the

clinical reality that some misdiagnoses are more harmful than others and should be scored

accordingly.

2. Methods

2.1. Data

For the PhysioNet/Computing in Cardiology Challenge 2020, we assembled multiple

databases from across the world. Each database contained recordings with diagnoses and

demographic data.

2.1.1. Challenge Data Sources We used data from five different sources. Two sources were

split to form training, validation, and test sets; two sources were included only as training

data; and one source was included only as test data. These sources of ECG data are described

below and summarized in Table 1. We made the training data and clinical ECG diagnoses

(labels) publicly available, but the validation and test data were kept hidden. The training,

validation and test data were matched as closely as possible for age, sex and diagnosis. The

completely hidden dataset has never been posted publicly, allowing us to assess common

machine learning problems such as overfitting.

(i) CPSC. The first source is the China Physiological Signal Challenge 2018 (CPSC2018),

held during the 7th International Conference on Biomedical Engineering and

Biotechnology in Nanjing, China [14]. This source includes three databases: the original

public training dataset (CPSC), an unused dataset (CPSC-Extra), and the test dataset

(the hidden CPSC set) from the CPSC2018. The CPSC data and CPSC-Extra datasets

were shared as training sets. The hidden CPSC set was split into validation and test

set for this year’s Challenge.

(ii) INCART. The second source is the public dataset from the St. Petersburg Institute of

Cardiological Technics (INCART) 12-lead Arrhythmia Database, St. Petersburg, Russia,

which is posted on in PhysioNet [15]. The dataset was shared as a training set.

(iii) PTB and PTB-XL. The third source is the Physikalisch-Technische Bundesanstalt

(PTB) Database, Brunswick, Germany. This source includes two public databases: the
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Database
Total

Patients

Recordings

in Training

Set

Recordings

in Validation

Set

Recordings

in Test

Set

Total

Recordings

CPSC 9458 10330 1463 1463 13256

INCART 32 74 0 0 74

PTB 19175 22353 0 0 22353

G12EC 15742 10344 5167 5167 20678

Undisclosed Unknown 0 0 10000 10000

Total Unknown 43101 6630 16630 66361

Table 1. Numbers of patients and recordings in the training, validation, and test databases

for the Challenge. The training set includes data from the China Physiological Signal

Challenge 2018 (CPSC), the St. Petersburg Institute of Cardiological Technics (INCART),

the Physikalisch-Technische Bundesanstalt (PTB), and the Georgia 12-lead ECG Challenge

(G12EC) databases. The validation set includes data from the CPSC and the G12EC

databases. The test set includes data from the CPSC, the G12EC, and the undisclosed

databases.

PTB Diagnostic ECG Database [16] and the PTB-XL Database [17], a large publicly

available ECG dataset. These datasets were shared as training sets.

(iv) G12EC. The fourth source is the Georgia 12-lead ECG Challenge (G12EC) Database,

Emory University, Atlanta, Georgia, USA. This is a new database, representing a large

population from the Southeastern United States, and is split between the training,

validation, and test sets. The validation and test set comprised the hidden G12EC set.

(v) Undisclosed. The fifth source is a dataset from an undisclosed American institution

that is geographically distinct from the other dataset sources. This dataset has never

been (and may never be) posted publicly, and is used as a test set for the Challenge.

2.1.2. Challenge Data Variables Each 12-lead ECG recording was acquired in a hospital or

clinical setting. The specifics of the data acquisition depend on the source of the databases,

which were assembled around the world and therefore vary. We encourage the readers to

check the original publications for details but provide a summary below.

Each annotated ECG recording contained 12-lead ECG signal data with sample

frequency varying from 257 Hz to 1 kHz. Demographic information, including age, sex,

and a diagnosis or diagnoses, i.e., the labels for the Challenge data, were also included.

The quality of the label depended on the clinical or research practices and included labels

that were machine-generated, over-read by a single cardiologist, and adjudicated by multiple

cardiologists.

Table 2 provides a summary of the age, sex, and recording information for the Challenge

databases, indicating differences between the populations. Table 3 and Figure 1 provide
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Dataset
Number of

Recordings

Mean

Duration

(seconds)

Mean Age

(years)

Sex

(male/female)

Sample

Frequency

(Hz)

CPSC (all data) 13256 16.2 61.1 53%/47% 500

CPSC Training 6877 15.9 60.2 54%/46% 500

CPSC-Extra Training 3453 15.9 63.7 53%/46% 500

Hidden CPSC 2926 17.4 60.4 52%/48% 500

INCART 72 1800.0 56.0 54%/46% 257

PTB 516 110.8 56.3 73%/27% 1000

PTB-XL 21837 10.0 59.8 52%/48% 500

G12EC (all data) 20678 10.0 60.5 54%/46% 500

G12EC Training 10344 10.0 60.5 54%/46% 500

Hidden G12EC 10344 10.0 60.5 54%/46% 500

Undisclosed 10000 10.0 63.0 53%/47% 300

Table 2. Number of recordings, mean duration of recordings, mean age of patients in

recordings, sex of patients in recordings, and sample frequency of recordings for each data

set. Italicized dataset names indicate that the database is a subset of the source dataset

above it. The training, validation and test data were matched as closely as possible for age,

sex and diagnosis.

summaries of the diagnoses for the training and validation data. The training data contain

111 diagnoses or classes. We used 27 of these 111 diagnoses to evaluate participant

algorithms because they were relatively common, of clinical interest, and more likely to be

recognizable from ECG recordings. Table 3 contains the list of the scored diagnoses for the

Challenge can be seen in Table 3 with long-form descriptions, the corresponding Systematized

Nomenclature of Medicine Clinical Terms (SNOMED-CT) codes, and abbreviations. Only

these scored classes are shown in Table 3 and Figure 1, but all 111 classes were included in

the training data so that participants could decide whether or not to use them with their

algorithms. The test data contain a subset of the 111 diagnoses in potentially different

proportions, but each diagnosis in the test data was represented in the training data.

All data were provided in MATLAB- and WFDB-compatible format [11]. Each ECG

recording had a binary MATLAB v4 file for the ECG signal data and an associated text

file in WFDB header format describing the recording and patient attributes, including the

diagnosis or diagnoses, i.e., the labels for the recording. We did not change the original

data or labels from the databases, except (1) to provide consistent and Health Insurance

Portability and Accountability Act (HIPPA)-compliant identifiers for age and sex, (2) to

add approximate SNOMED CT codes as the diagnoses for the recordings, and (3) to change

the amplitude resolution to save the data as integers as required for WFDB format. Saving

the signals as integers help reduced storage size and compute times without degrading the
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Figure 1. Numbers of recordings with each scored diagnosis in the training and validation

sets. Colors indicate the fraction of recordings with each scored diagnosis in each data set,

i.e., the total number of each scored diagnosis in a data set normalized by the number of

recordings in each data set. Parentheses indicate the total numbers of records with a given

label across training and the validation sets (rows) and the total numbers of recordings,

including recordings without scored diagnoses, in each data set (columns).
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Diagnosis Code Abbreviation

1st degree AV block 270492004 IAVB

Atrial fibrillation 164889003 AF

Atrial flutter 164890007 AFL

Bradycardia 426627000 Brady

Complete right bundle branch block 713427006 CRBBB

Incomplete right bundle branch block 713426002 IRBBB

Left anterior fascicular block 445118002 LAnFB

Left axis deviation 39732003 LAD

Left bundle branch block 164909002 LBBB

Low QRS voltages 251146004 LQRSV

Nonspecific intraventricular conduction disorder 698252002 NSIVCB

Pacing rhythm 10370003 PR

Premature atrial contraction 284470004 PAC

Premature ventricular contractions 427172004 PVC

Prolonged PR interval 164947007 LPR

Prolonged QT interval 111975006 LQT

Q wave abnormal 164917005 QAb

Right axis deviation 47665007 RAD

Right bundle branch block 59118001 RBBB

Sinus arrhythmia 427393009 SA

Sinus bradycardia 426177001 SB

Sinus rhythm 426783006 NSR

Sinus tachycardia 427084000 STach

Supraventricular premature beats 63593006 SVPB

T wave abnormal 164934002 TAb

T wave inversion 59931005 TInv

Ventricular premature beats 17338001 VPB

Table 3. Diagnoses, SNOMED CT codes and abbreviations in the posted training databases

for diagnoses that were scored for the Challenge.

signal, as it only represents a change in the scaling factor for the signal amplitude.

2.2. Challenge Objective

We asked participants to design working, open-source algorithms for identifying cardiac

abnormalities in 12-lead ECG recordings. To the best of our knowledge, for the first time in

any public competition, we required that teams submit code both for their trained models
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and for training their models, which aided the generalizability and reproducibility of the

research conducted during the Challenge. We ran the participants’ trained models on the

hidden validation and test data and evaluated their performance using a novel, expert-based

evaluation metric that we designed for this year’s Challenge.

2.2.1. Challenge Overview, Rules, and Expectations This year’s Challenge is the 21st

PhysioNet/Computing in Cardiology Challenge [11]. Similar to previous Challenges, this

year’s Challenge had an unofficial phase and an official phase. The unofficial phase (February

7, 2020 to April 30, 2020) provided an opportunity to socialize the Challenge and seek

discussion and feedback from teams about the data, evaluation metrics, and requirements.

The unofficial phase allowed 5 scored entries for each team. After a short break, the official

phase (May 11, 2020 to August 23, 2020) introduced additional training, validation, and test

data; a requirement for teams to submit their training code; and an improved evaluation

metric. The official phase allowed 10 scored entries for each team. During both phases, teams

were evaluated on a small validation set; evaluation on the test set occurred after the end of

the official phase of the Challenge to prevent sequential training on the test data. Moreover,

while teams were encouraged to ask questions, pose concerns, and discuss the Challenge in

a public forum, they were prohibited from discussing their particular approaches to preserve

the uniqueness of their approaches for solving the problem posed by the Challenge.

2.2.2. Classification of 12-lead ECGs We required teams to submit both their trained

models along with code for training their models. We announced this requirement at the

launch of this year’s Challenge but did not start requiring the submission of training code

until the official phase of the Challenge; by this time, we had a better idea of what teams

would need to train their algorithms. Teams included any processed and relabeled training

data in the training step; any changes to the training data are part of training a model.

We first ran each team’s training code on the training data and then ran each team’s

trained code from the previous step on the hidden validation and test sets. We ran each

algorithm sequentially on the recordings to use them as realistically as possible.

We allowed teams to submit either MATLAB or Python implementations of their code.

Other languages, including Julia and R, were supported but received insufficient interest

from participants during the unofficial phase. Participants containerized their code in Docker

and submitted it in GitHub or Gitlab repositories. We downloaded their code and ran in

containerized environments on Google Cloud. The computational environment is given more

fully in [18], which describes the previous year’s Challenge.

We used virtual machines on Google Cloud with 8 vCPUs, 64 GB RAM, and an optional

NVIDIA T4 Tensor Core graphics processing unit (GPU) with a 72 hour time limit for

training on the training set. We used virtual machines on Google Cloud with 2 vCPUs, 13

GB RAM, and an optional NVIDIA T4 Tensor Core GPU with a 24 hour time limit for
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running the trained classifiers on the test set.

To aid teams, we shared baseline models that we implemented in MATLAB and Python.

The Python baseline model was a random forest classifier that used age, sex, QRS amplitude,

and RR intervals as features. QRS detection was implemented using the Pan-Tompkins

algorithm [19]. The MATLAB baseline model was a hierarchical multinomial logistic

regression classifier that used age, sex, and global electrical heterogeneity [20] parameters

as features. The global electrical heterogeneity parameters were computed using a time

coherent median beat and origin point calculation [21]. The QRS detection and RR interval

was implemented using the heart rate variability (HRV) cardiovascular research toolbox [22],

[23]. However, it was not the aim of these example models to provide a competitive classifier

but instead to provide an example of how to read and extract features from the recordings.

2.2.3. Evaluation of Classifiers For this year’s Challenge, we developed a new scoring

metric that awards partial credit to misdiagnoses that result in similar outcomes or

treatments as the true diagnoses as judged by our cardiologists. This scoring metric reflects

the clinical reality that some misdiagnoses are more harmful than others and should be

scored accordingly. Moreover, it reflects the fact that it is less harmful to confuse some

classes than others because the responses may be similar or the same.

Let C = {ci}mi=1 be a collection of m distinct diagnoses for a database of n recordings.

First, we defined a multi-class confusion matrix A = [aij], where aij is the normalized

number of recordings in a database that were classified as belonging to class ci but actually

belong to class cj (where ci and cj may be the same class or different classes). Since each

recording can have multiple labels and each classifier can produce multiple outputs for a

recording, we normalized the contribution of each recording to the scoring metric by dividing

by the number of classes with a positive label and/or classifier output. Specifically, for each

recording k = 1, . . . , n, let xk be the set of positive labels and yk be the set of positive

classifier outputs for recording k. We defined a multi-class confusion matrix A = [aij] by

aij =
n∑

k=1

aijk, (1)

where

aijk =

{
1

|xk∪yk|
, if ci ∈ xk and cj ∈ yk,

0, otherwise.
(2)

The quantity |xk ∪ yk| is the number of distinct classes with a positive label and/or classifier

output for recording k. To incentivize teams to develop multi-class classifiers, we allowed

classifiers to receive slightly more credit from recordings with multiple labels than from

those with a single label, but each additional positive label or classifier output may reduce

the available credit for that recording.
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Next, we defined a reward matrix W = [wij], where wij is the reward for a positive

classifier output for class ci with a positive label cj (where ci and cj may be the same class or

different classes). The entries of W are defined by our cardiologists based on the similarity

of treatments or differences in risks (see Figure 2). The highest values of the reward matrix

are along its diagonal, associating full credit with correct classifier outputs, partial credit

with incorrect classifier outputs, and no credit for labels and classifier outputs that are not

captured in the weight matrix. Also, three similar classes (i.e., PAC and SVPB, PVC and

VPB, CRBBB and RBBB) are scored as if they were the same class, so a positive label or

classifier output in one of these classes is considered to be a positive label or classifier output

for all of them. However, we did not change the labels in the training or test data to make

these classes identical to preserve any institutional preferences or other information in the

data.

Finally, we defined a score

sunnormalized =
m∑
i=1

m∑
j=1

wijaij (3)

for each classifier as a weighted sum of the entries in the confusion matrix. This score is

a generalized version of the traditional accuracy metric that awards full credit to correct

outputs and no credit to incorrect outputs. To aid interpretability, we normalized this score

so that a classifier that always outputs the true class or classes receives a score of 1 and an

inactive classifier that always outputs the normal class receives a score of 0, i.e.,

snormalized =
sunnormalized − sinactive

strue − sinactive
, (4)

where sinactive is the score for the inactive classifier and strue is the score for ground-truth

classifier. A classifier that returns only positive outputs will typically receive a negative

score, i.e., a lower score than a classifier that returns only negative outputs, which reflects

the harm of false alarms.

Accordingly, this scoring metric was designed to award full credit to correct diagnoses

and partial credit to misdiagnoses with similar risks or outcomes as the true diagnosis. The

resources, populations, practices, and preferences of an institution all determine the ideal

choice of the reward matrix W ; the choice of W for the Challenge is just one example.

3. Results

We received a total of 1395 submissions of algorithms from 217 teams across academia and

industry. The total number of successful entries was 707, with 397 successful entries during

the unofficial phase of the Challenge and 310 successful entries during the official phase.

During the official phase, we scored each entry on the validation set. The final score and
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Figure 2. Reward matrix W for the diagnoses scored in the Challenge with rows and

columns labeled by the abbreviations for the diagnoses in Table 3. Off-diagonal entries that

are equal to 1 indicate similar diagnoses that are scored as if they were the same diagnosis.

Each entry in the table was rounded to the first decimal place due to space constraints in

this manuscript, but the shading of each entry reflects the actual value of the entry.

ranking were based on the test set. A total of 70 teams’ codebases successfully ran on the test

data. After final scoring, 41 teams were able to qualify for the final rankings [24]. Reasons

for disqualification included: the training algorithm did not run, the trained model failed to

run on the hidden undisclosed set (because of differences in sampling frequencies), the team

failed to submit a preprint on time, the team failed to attend Computing in Cardiology

(remotely or in person) and defend their work, and the team failed to submit their final

article on time or address the reviewers’ comments.
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Figure 3 shows the performance of each team’s final algorithm on the validation set,

the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test set.

The line colors from red to blue indicates the higher to the lower scores on the test set. We

observed the difference in score between each set. The higher scores were observed in the

hidden CPSC dataset which contained a larger number of recordings in the training set as

compared to the other three hidden dataset. We can also observe a drop on scores for the

hidden undisclosed set for which none recording was included in the training or validation.

Figure 4 shows the rank performance of each team’s final algorithm on the validation

set, the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test

set. The points indicate the rank of each individual algorithm on each dataset. The line

colors indicate the ranks on the test set.

On average, the Challenge scores dropped 47% from the hidden CPSC set to the hidden

G12EC set and another 57% from the hidden G12EC set to the hidden undisclosed set. We

observed an average drop of 50% from the validation score set to the test set.

The most common algorithmic approach was based on deep learning and convolutional

neural networks (CNNs). However, over 70% of entries used standard clinical or hand-crafted

features with classifiers such as support vector machines, gradient boosting, random forests,

and shallow neural networks. The median training time was 6 hours, 49 minutes; nearly all

approaches that required more than a few hours for training used deep learning frameworks.

4. Discussion

Figures 3 and 4 show how the performance of participant entries dropped on the hidden

set. This under-performance on the hidden undisclosed dataset, and to a much lesser

extent, on the hidden G12EC dataset could be due to the most teams over-trained on the

CPSC data. The hidden CPSC data included fewer recordings than the other hidden sets.

The poorer scores and ranks demonstrate the importance of including multiple sources for

generalizability of the algorithms.

Deep learning approaches are one of the most popular machine learning techniques for

classification problems, especially those of images. Some participants adapted previously

developed algorithms for other classification problems and therefore this modification does

not necessarily perform better than a custom-made machine learning algorithm.

It is important to note the class imbalance between the datasets, but the larger number

and varying prevalences of diagnoses in different datasets represent the real-world problem of

reading 12-lead ECGs in a clinical setting. In fact, most teams performed best on the CPSC

dataset, which was the least representative dataset because it had fewer and more balanced

diagnoses than the other datasets. Moreover, the scoring function that we proposed and

used to evaluate the performance of each algorithm penalized classes non-uniformly, based

on clinical importance. Balancing data would not only be artificial, but would provide
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Figure 3. Scores of the final 70 algorithms that were able to completely evaluated on the

validation set, the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and

the test set. The points indicate the score of each individual algorithm on each dataset, with

the higher points showing algorithms with the highest scores on each dataset. The ranks on

the test set are further indicated by color, with red indicating the best ranked algorithms

and blue indicating the worst ranked algorithm on the test set.

an advantage to teams because the prevalence of the class would then be known. The

Challenge was designed to discourage the use of a priori information on distributions, since

the algorithms are likely to be used in a variety of unknown populations. Moreover, racial

inequities and genetic variations are likely to lead to substantially different performances.

While we cannot address that directly because the populations in the databases are not

strictly matched, there is the potential to evaluate long-standing unknowns in algorithms that

have been traditionally developed on predominately white, western hemisphere populations.

(We note that the training and test data were matched as closely as possible for age, sex
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Figure 4. Ranks of the final 70 algorithms that were able to completely evaluated on the

validation set, the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set,

and the test set. Lines from top to bottom indicate the rank of each individual algorithm

on each dataset. Rank is indicated by color coding, with red indicating the best ranked

algorithms, blue indicating the worst ranked algorithm on the test set, and gray indicating

disqualified algorithms.

and diagnosis.) In future Challenges, we will re-use these databases and reveal per-class

performances in the hidden test data to allow full evaluations of the algorithms in terms of

class, age, race, and gender.

5. Conclusions

This article describes the world’s largest open access database of 12-lead ECGs, together

with a large hidden test database to provide objective comparisons. The data were drawn

from three continents with diverse and distinctly different populations, encompassing 111

diagnoses with 27 diagnoses of special interest for the Challenge. Additionally, we introduced
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a novel scoring matrix that rewards algorithms based on similarities between diagnostic

outcomes, weighted by severity/risk.

The public training data and sequestered validation and test data provided the

opportunity for unbiased and comparable repeatable research. Notably, to the best of our

knowledge, this is the first public competition that has required the teams to provide both

their original source code and the framework for (re)training their code. In doing so, this

creates the first truly repeatable and generalizable body of work on the classification of

electrocardiograms.
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