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Abstract 

Advances in artificial intelligence and computer 

science have allowed for powerful assistive tools in a 

wide range of fields. Decision support systems could help 

health professionals to provide patients with quick and 

cost-efficient diagnostic analysis. The 2020 CinC 

Challenge challenges participants to develop such a tool 

for 12-lead ECG recordings. 

In this paper, an approach for a multi-stream neural 

network is presented. Two parallel models were trained 

with different input data to combine the two relevant 

paradigms in modern machine learning. A simple 

multilayer perceptron and a deep convolutional neural 

network were concatenated for the final classification. 

Since the data originated from different sources, an 

ensemble of models was trained. 

Due to technical difficulties, we (easyG) submitted a 

trimmed version and achieved a test score of -0.290, 

which ranked as the 39th entry. Validation score was 

0.403. Although these results were mixed, offline 5-fold 

cross validation showed the potency of the full version. 

Our results indicate that deep learning methods could 

in fact benefit from the addition of features derived via 

classical signal processing. 

 

 

1. Introduction 

Researchers have successfully – and impressively – 

demonstrated that machine learning can be used to fulfil 

complex tasks in healthcare. To give recent examples, 

groups have classified skin cancer [1], pneumonia [2] or 

antibiotic resistance in bacterial infections [3] on expert 

levels of accuracy. 

  

1.1. 2020 CinC Challenge 

The 2020 Computing in Cardiology (CinC) Challenge 

asked participants to correctly diagnose 12-lead 

electrocardiographic (ECG) recordings according to 

SNOMED coding [4]. The organizers provided 43.101 

samples with 27 relevant labels from different sources as 

publicly available training material (see Table 1). 

 

Table 1. Training datasets and sizes 

Source No. of samples 

CPSC 6.877 

CPSC-Extra 3.453 

INCART 74 

PTB 516 

PTB-XL  21.837 

Georgia 10.344 

 

1.2. Multi-Stream neural networks 

In machine learning two major paradigms emerged 

over time, that differ in when and how information is 

being distilled from raw data. The first option is to 

manually extract features with signal processing 

algorithms and provide them to models which then 

recognize patterns in them. This requires extensive 

knowledge about the data and the research field around it 

but simplifies the later modelling and increases 

transparency. The second approach is to “outsource” the 

information extraction to the model itself by developing 

computationally more powerfully – yet also more 

expensive – models. As this is mostly done with neural 

networks with many layers, this is referred to as “deep 

learning” and learning patterns are not as transparent.  

The following chapters explain one way to combine 

both schools of thought that so often divide the research  

 

2. Methods 

We developed two neural networks that work in 

parallel before being concatenated by a final sigmoid-

activated classification layer as depicted in Figure 1. The 

model was then trained as one combined model. 

 
Figure 1. Multi-stream network as a schematic overview 
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2.1. Feature stream  

The feature engineering was based on previous work 

of the authors’ research group [5]. The following Table 2 

shows categories of features and the quantity of features 

in each category. Features were derived for every lead 

separately. 

 

Table 2. Feature categories and quantities as in [5] 

Category No. of classes  

Averaged beat 60 

Beat 46 

Atrial 39 

Rhythm 205 

Signal 6 

QRS 16 

Meta 14 

 

The resulting feature matrices were processed by a 

multilayer perceptron (MLP) with 2 layers, of which the 

first layer had 1024 nodes (with dropout = 0.08) and the 

second 128 nodes (dropout = 0.1). Each layer was 

activated by a leaky rectifying linear unit and concluded 

with a batch normalizing layer.  

 

2.2. Deep convolutional stream 

    The deep convolutional neural network (DNN) was 

based on the 2018 China Physiological Signal Challenge 

(CSPC) winners’ model [6]. This model consists of 5 1D-

convolutional blocks (see Table 3). Layers were activated 

by leaky linear rectifying.   

 

Table 3. Description of one convolutional block (* the 5th 

block’s last layer used a kernel size of 48) 

Layer No. of filters Kernel size Padding 

1D-conv. 12 3 same  

1D-conv. 12 3 same 

1D-conv. 12 24* same 

Dropout = 0.2 - - - 

 

The final block was followed by a bidirectional gated 

recurrent unit with 20 nodes (dropout = 0.2) and an 

attention layer, followed by a batch normalization layer.  

The signals were filtered with a Butterworth bandpass 

filter (0.1 – 30 Hz) of 2nd order before being processed by 

the convolutional neural network. 

 

2.3. Concatenation layer 

A single fully connected layer with sigmoid activation 

concluded the multi-stream model so that the outcome 

would represent a probability for each label. The number 

of nodes was adapted to the number of used classes. After 

classification, the resulting vector was mapped to the full 

class vector to achieve a standardized outcome length for 

the final classification result.   

 

2.4. Model ensemble and class reduction  

As the datasets were from different sources, individual 

models were built. The rationale behind this, was the fact, 

that the records were labelled by different experts and 

with different pools of classes, likely resulting in 

diverging diagnosing criteria. Individual models could 

potentially compensate for these varying ground truths. 

Furthermore, this allowed for the reduction of classes 

overall. As stated above, 27 classes in total were 

considered for challenge, but since not every class was 

prevalent in each dataset, a model only has to learn those, 

which are in this specific dataset. A generic model would 

have to consider all classes, dramatically increasing the 

complexity of this task. 

An unknown number of samples in the hidden test set 

are from additional, unidentified sources. In such cases, 

the entire ensemble was asked, and a majority vote would 

determine the final classification outcome. 

To further reduce the dimensionality of this problem, 

extremely rare classes (under 1% of total labels of a 

dataset) were also not considered.  

 

2.5. Training and evaluation routine 

All dataset specific models were trained in a 5-fold 

cross validation process in 3 variations: features only, 

signals only and multi-stream (combined) model. In all 

cases the same optimizer (Adam), learning rate (0.001,   

β1 = 0.9) and loss function (binary crossentropy) and 

model architectures were used for comparable results. 

The 4 larger datasets (CPSC, CPSC-Extra, PTB-XL and 

Georgia) were trained for 200 epochs, while the 2 smaller 

sets (PTB and St. Petersburg INCART) were trained for 

500 epochs to compensate for their smaller training size.  

During training for every fold, the challenge metric 

was calculated after each epoch with the evaluation code 

provided by the organizers [4]. Highest achieved metrics 

were also recorded. The x-axes in the Results section’s 

figures were normalized to [% of epochs] to compare the 

processes of different lengths. 

 

3. Results 

3.1. Official CinC Challenge Score 

Unfortunately, we (team: easyG) were not able submit 

our full approach for the challenge leaderboard because of 
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technical burdens associated with our approach. To score 

a valid entry for the challenge, we submitted a single 

generic DNN model, without feature engineering. Our 

final highest achieved metric is thus low at 0.403 

(validation) and -0.290 (test), which ranked as 39th out of 

41. We encourage readers to look beyond this limitation 

and examine the results achieved in offline validation 

presented below (Table 4). 

 

3.2. Highest achieved metrics 

The results presented in this chapter are achieved with 

the 6 publicly available offline datasets and constitute the 

highest achieved challenge metric (described in [4]) in 

any of the 5 folds during offline cross validation.  

 

Table 4. Highest challenge metrics for the 3 model 

variations for each dataset achieved in training in any fold 

Dataset Features Signals Combined 

CPSC 0.837 0.840 0.844 

CPSC-Extra 0.687 0.426 0.659 

INCART 0.678 0.513 0.560 

PTB 1.000 -0.048 1.000 

PTB-XL  0.549 0.518 0.552 

Georgia 0.535 0.582 0.549 

Weighted 

Average 
0.608 0.571 0.612 

 

 

3.3. Optimization course 

Figures 2a-2c illustrate the course of achieved metric 

during the offline training process for the 3 variations. 

The curves are averaged over all 5 cross validation folds. 

a) 

 

b) 

 

c) 

 

Figure 2. Optimization course for the 3 variation of 

models: a) features only, b) signals only, c) combined 

(PTB data removed in b) since it produced no scores > 0). 

Highest mean scores are additionally noted in the legend. 

Diamond-shaped markers indicate when highest metric 

was achieved during the optimization process. 

4. Discussion 

Although an entry with a complete version of our idea 

into the challenge’s official leaderboard was ultimately 

not possible due technical difficulties, there are still 

interesting aspects to be learned from our approach. 

Combining two different machine learning paradigms 

leads to novel challenges, some of which are presented 

here. The weighted averages in Table 4 can be interpreted 

as hypothetical leaderboard scores with the limitation that 

samples from unknown, additional sources could not be 

included in this offline validation.  

 

4.1. Optimization disparity 

As stated earlier, the two streams operate with inputs 

of varying information density. Features are information 

dense, as the extraction of knowledge is done manually 

prior to the model training, while the DNN receives 

unprocessed, raw data and thus is required to extract 

patterns itself. This leads to a disparity in optimization 

peaks between the two streams, where the feature 

stream’s MLP is optimized significantly earlier than the 

DNN as seen in differences in peak timings between 

Figure 2a and Figure 2b. Thus, determining training 

duration was a challenging task and was further 

complicated in this experiment as the feature stream 

showed a tendency to overfit. Ultimately, this led to the 

feature stream dominating the entire multi-stream 

network, as the DNN was not able to match the MLP’s 

performance early on and never effectively learned. This 

was likely further pronounced by the asymmetrical 

concatenation, as the MLP had 128 nodes compared to 

the DNN’s 40 nodes. Figure 3 shows an example of 

optimization disparity where the “signals only” model 

optimized noticeably later than the “features only”. 

Similar behavior was found in other datasets too, 

although, not as pronounced as in the CPSC set.   
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Figure 3. Optimization disparity shown with the example 

of CPSC model with an averaged optimization course for 

the “features only” (blue) and “signals only” (orange) 

model variant. Highest achieved scores for each model is 

annotated by diamond-shaped markers. 

A possible solution to this issue could be to freeze the 

MLP’s weights after a certain amount of training epochs 

and thus give the DNN chance to contribute more. 

Another option would be training both streams separately, 

transferring the weights into a combined but untrained 

model afterwards and only training the final 

concatenation layer as a form of transfer learning. This 

approach seems reasonable, yet the combined effect and 

synergistic effects could be reduced without joint 

training. Naturally, a symmetrical concatenation could 

also establish a better balance between streams. 

Overall, the DNNs’ streams could have benefitted 

from more training epochs, as Figure 2b shows a 

tendency of optimization peaks at later stages of the 

training process. 

 

4.2. Dataset differences 

As the Results section showed, the same approach 

performed vastly different on all datasets. While the 

model for the CPSC dataset performed well, the two large 

datasets (PTB-XL, Georgia Database) were significantly 

less well classified. This might seem counter-intuitive but 

can be explained by two facts. Firstly, the CPSC set is the 

3rd largest dataset but only had 6 different classes, which 

constitutes a balanced mix between amount of training 

samples and degrees of freedom in classification. While 

the 2 larger datasets benefit from a high number of 

training samples, the also had a higher number of 

significant classes (PTB-XL: 19, Georgia: 20). This likely 

increased the problem’s complexity to the extent, that the 

model was overwhelmed. Secondly, the model 

architecture had been optimized during the unofficial 

phase where only the CPSC dataset had been available. 

As could be expected, the small datasets either produced 

distinct training instability (PTB) or virtually no training 

effect at all (INCART). Although the underlying type of 

data is the same in all datasets, quantitative and 

qualitative variations in classes have enough impact that 

individual models can potentially produce better results. 

This reinforces this paper’s approach, but also highlights 

the importance of model architecture adaptation. 

 

4.3. Conclusion on synergistic effects 

The highest weighted averaged was achieved by the 

multi-stream model with a score of 0.612 outperforming 

both single stream networks. This confirms our original 

idea, that a combined model could perform better than its 

parts. However, a critical look at Table 4 also reveals that 

not all datasets benefitted from the combined approach. In 

the CPSC and PTB-XL sets, the combined model 

performed better, while this effect was not seen in other 

datasets. In general, the performance of the feature stream 

was more stable than the DNN stream. Furthermore, in all 

but one case (Georgia) the addition of features to the 

DNN lead to an increase in score. This suggests, that deep 

learning methods could likely benefit from the addition of 

features in general. Additionally, the MLP’s stream also 

constituted only an estimated 11.8% of the combined 

models’ computational effort, meaning extending DNNs 

with a feature stream would also be a cost-effective 

improvement. These results encourage us to pursuit this 

method further, improve on identified weaknesses and 

test its effectiveness in future research.  
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