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Abstract

The ability to detect several key cardiac pathologies si-
multaneously, based on ECG signals, is key towards es-
tablishing a real-world application of AI models in car-
diology. Such a multi-label classification task requires not
only well-performing binary classification models, but also
a way to combine such models into an overall classifica-
tion modeling structure. We have approached this task
using materials from Classification of 12-lead ECGs for
the PhysioNet/Computing in Cardiology Challenge 2020.
Duplicate ECG strips have been removed. An annotation
tool for labeling ECG wave points and intervals/templates
has been created in MATLAB R©, and used for labeling
pathological intervals, as well as noisy intervals and in-
consistencies between the ECG data and the pre-assigned
labels. Several one-vs-rest binary classifiers were built,
where morphological features specific to each pathology
had been generated from the signals. The binary classifiers
were augmented by a multi-class classifier using an Error
Correcting Output Codes (ECOC) methodology. Our ap-
proach achieved a challenge validation score of 0.616, and
full test score of 0.194, placing us 23 (team DSC) out of 41
in the official ranking.

1. Introduction

The ability to detect various cardiac pathologies individ-
ually and simultaneously in ECG signals is key towards es-
tablishing a real-world application of AI models in cardiol-
ogy. The PhysioNet/Computing in Cardiology Challenge
2020 (‘the Challenge’) focused on automated, open-source
approaches for classifying cardiac abnormalities from 12-
lead ECGs [1,2]. Our best entry in the Challenge applied a
multi-stage binary pathology detection scheme, using an
Error Correcting Output Codes (ECOC) [3] method for
multi-class classification sub-problems. We have subse-
quently used a bootstrap-averaging (as in Bagging [4]) ap-
proach, applied over our overall learning scheme, for ro-
bustness of the predictions.

2. Methods

The learning steps to approach the task in the Challenge
ran as follows. At the first step, data pre-processing, we
scanned a vast number of the training data for noisy and
(where apparent) mislabeled signals within each of the 12
ECG leads. Subsequently, we either relabeled or excluded
some of those signals. All signals have been re-sampled
to 250 Hz. At the second step, feature generation, we
applied an R-peak detector, ‘gqrs’ [5], to leads I and II
of the ECG strips. Thus we obtained (predicted) R-peak
locations along each strip, and were able to define ECG
inter-beat intervals (IBI). A total of 867 features have been
generated, some of which on complete strips, some within
each IBI. Specifically, we have used a feature set pro-
posed in [6] which was used in the PhysioNet/Computing
in Cardiology Challenge 2017 on Atrial Fibrillation (AF)
classification from a short single lead ECG recording [7],
the Global Electrical Heterogeneity features which were
included in the MATLAB R© baseline model from [2] as
well as morphology-specific features, which we have de-
veloped to be appropriate for the pathologies provided in
the Challenge. However, for ‘pacing rhythm’ and ‘nonspe-
cific intraventricular conduction disorder’ no specific fea-
tures have been created. A lot of the features were based
on ECG wave detections - P-wave, Q-wave, and T-wave
- for which we used the so-called wavedet detector devel-
oped by [8]. The wavedet detector was applied separately
on leads I, II, aVL, V1, V4 and V6 of each signal. The
AF features were generated on leads I, II and V1. Specific
features, based on all ECG leads if not stated otherwise,
next to the above general features, were assigned for the
following pathologies:

1. ‘1st degree av block’ and ‘prolonged pr interval’ : dis-
tance between beginning/mid/end of P-wave and R;
2. ‘atrial fibrillation’ : variance of the distances between
beginning/mid/end of P-wave and R;
3. ‘bradycardia’ / ‘tachycardia’: length of IBI’s;
4. ’(complete) right bundle branch block‘ / ‘left bundle
branch block’ : T-wave (lack of) inversion in leads V1,
V2, V5, and V6; length of QRS complex;
5. ‘left anterior fascicular block’, ‘left axis deviation’, and
‘right axis deviation’ : height of R-peak in leads I,II,III,
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Figure 1. Our methodology comprises a learning scheme
of 6 steps: (1) binary classification of ‘regular vs. irreg-
ular rhythm’; (2) addition of the resulting raw prediction
score to the feature set; (3) run one-vs-rest binary models;
(4) run group-vs-group (of labels) binary models; (5) re-
peat the procedure 10 times on bootstrap versions of the
training set; (6) assign average score per label/pathology.

aVR, aVL, aVF, where the R-peak locations are computed
only from leads I and II and super-imposed on the rest of
these leads;
6. ‘low qrs voltages’ : voltage difference between the low-
est and highest points in the QRS complex;
7. ‘premature atrial contraction’ and ‘premature ventricu-
lar contractions’ : morphology of the signal both within
one IBI and two consecutive IBI intervals.
8. ‘t wave abnormal’ : we have used features only for de-
tecting two types of abnormalities: inverted T-waves and
flattened T-waves.

Once the set of IBI features had been generated, we em-
ployed a multi-label learning scheme. See Figure 1 for a
graphical representation of the scheme. In each step of
the scheme we employed a binary classifier, which is Ad-
aBoost [9], implemented in MATLAB R© [10]. We note that
the classes in each binary classifier consisted either of one
label or of several labels (pathologies) combined into one
label. Accordingly, the labels in this scheme we first di-
vided into regular vs. irregular rhythms, where the irreg-
ular rhythms were ‘atrial fibrillation’ and ‘atrial flutter’.

We have taken a decision not to include ‘sinus arrhyth-
mia’ among the irregular rhythms. This binary classifier
we referred to as ”regular rhythms vs. irregular rhythms”.
Once a prediction for the presence of ‘irregular rhythms’
had been generated, we added the prediction score (a value
between 0 and 1) to the feature set for the rest of the (fur-
ther) classifiers. This approach was inspired by Classi-
fier Chains [11], with the modification that we add the
prediction scores instead of the predicted labels. We ob-
tained these scores in the training phase using 5-fold cross
validation. The second step of the learning scheme con-
sists of running a one-vs-rest binary classifier for each of
the so-called ‘scored’ pathologies in the Challenge. In
addition, we generated several multi-class classification
problems for frequently occurring (individually covering
at least 1.8% of the instances) pathology or normal class
combinations in the training dataset. This resulted in 10
combinations (groups) being selected, which covered 60%
of the training set. For these multi-class problems we
applied an Error Correcting Output Codes (ECOC) [12]
methodology, which resulted in one set of frequently oc-
curring combinations of labels to be predicted for a partic-
ular ECG strip.

The ECOC methodology in essence works as follows:
each class label is described in terms of several (boolean)
aspects, with the aim to provide redundancy. In fact, each
label is coded as a vector of zeros and ones, representing
the true label. To predict the label of an instance, one pre-
dicts each of the aspects. The prediction is represented by a
vector of zeros and ones. The prediction vector is decoded
by looking up the closest vector (according to some dis-
tance measure) for which a true label is known. To apply
ECOC in the context of the challenge, each combination of
pathologies that occurs in the training set, is mapped one-
to-one to a true label. Note that this results in more than
a thousand labels. For a particular label, the occurrence
or non-occurrence of each pathology in that label defines
part of the label’s coding: one bit for each pathology. This
scheme is known in the literature as Binary Relevance [13,
p. 60]. Each of the remaining bits represents a frequently-
occuring combination of pathologies. We use Hamming
Distance for decoding. The MATLAB R© implementation
of ECOC, ECOClib [14] and our own customizations of it
were used in several submissions.

Once scores for each separate pathology (or lack of
such) were obtained, the following rule (known as Propor-
tional Cut Method in the literature [13, p. 50]) was used to
assign thresholds on these scores, so that a label is being
assigned only if the respective threshold is surpassed (if no
threshold is surpassed, the label with the highest score is
assigned): Choose a threshold (one threshold per pathol-
ogy) such that the distribution of predicted labels in a test
set is the same as the observed one in the training set. Note
that here, the test set is not the hidden test set of the Chal-
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lenge, but a stratified holdout sample of the data available
for training in which care was taken not to include ECG
strips from the same patient in both the training and test
set. After the thresholds are determined in this way, they
remain fixed for use on the hidden test set. The reasons for
fixing the thresholds are that (1) the class distribution of
the hidden test data might differ from the class distribution
of the training data and (2) hidden test instances are clas-
sified one after the other, so the distribution of the test data
is not known to the classification code. To apply this rule
we used code published by [15].

The final stage of the learning scheme, after scores for
each pathology (or lack of such) had been generated and
detection thresholds on the scores applied, involved repeat-
ing the procedure 10 times using bootstrap samples taken
from 80% (at random) of the training set. The main idea
was to achieve more robust scoring. Thus, 10 scores were
obtained, one for each training bootstrap sample, and the
thresholds for each pathology were applied to the average
score (per pathology) obtained from the 10 bootstrapped
training datasets.

3. Results

The so-called Challenge metric score for our best-
ranked model was 0.194 on the undisclosed full test set of
the Challenge (0.824 on test database 1 of size 1463, 0.301
on test database 2 of size 5167 and 0.062 on test database 3
of size 10000). This result has put our team, DSC, a team-
position rank number 23 among the official scores with
ranking. The best team achieved a score of 0.533. Our
cross-validation score on the training set on the same met-
ric was 0.4. We note that our submissions strategy for the
Challenge test-set scoring involved 10 submissions (max-
imum allowed), each of which cover partially the aspects
of our overall learning scheme presented in the Method-
ology section. Our aim was to find out which aspects of
our methodology contributed best to improvements of our
naive baseline score of 0.346 of a multi-class, single-label
ECOC model taking into account the cost-matrix provided
by the challenge. Introducing a multi-label scheme, im-
proved the score to 0.578. Bagging improved this result
further to 0.611. Adding specific morphological features
increased the score to 0.616 on the partial validation hid-
den test set of the official phase. Apart from the official
submissions, we also ran several experiments on the train-
ing data using cross-validation. As a result, we have ob-
served that most importantly, it is possible to greatly re-
duce the number of features to 1-5 features per pathology.
This greatly improves the interpretability of the models.
The presence or absence of specific morphological features
tuned to detect morphologies in the ECG signal play the
most important role in reducing the number of features.
Just adding these specific features to the feature set does

not make a huge difference. Second of all, the threshold-
ing strategy plays a very significant role towards obtaining
a high score, though it has an intrinsic flow, as discussed
in the next section. Last but not least, the addition of (raw)
prediction scores for ‘irregular rhythm’ to all one-vs-all bi-
nary classification problems proved beneficial.

4. Discussion and Conclusions

We have implemented a multi-label multi-step strategy
to classify pathologies (or lack of such) based on a huge
training set of 12-lead ECG strips. A total of 23 patholo-
gies as well as a ‘sinus rhythm’ have been included in the
Challenge. We believe that including the prediction for a
certain group of pathologies, in our case pathologies rep-
resenting irregular rhythms, as an input feature in (subse-
quent) one-vs-rest binary classification models proved to
be beneficial. One alternative was, for example, to use a
binary classifier for regular vs irregular rhythm, and then
at a second stage to apply a one-vs-others classification
scheme, where ‘others’ is not all the rest of the ECG labels
but rather those with regular rhythm. This strategy proved
to be inferior in our cross-validation testing. The strategy
for assigning thresholds on the label prediction scores was
chosen so as to make sure that the expected distribution of
predicted labels in a test set to be the same as the observed
one in the training set. This is valid only if the assumption
holds true. In real life applications where the populations
differ such a strategy is expected to be inferior. Further-
more, we do not take into account the cost matrix provided
by the Challenge in choosing the thresholds. This could
be incorporated by choosing the thresholds using cross-
validation. We have applied just one classifier for all of our
(binary) classification problems, namely AdaBoost. This
is bound to be suboptimal. In addition, we have not per-
formed feature selection for each classification problem,
which is another drawback of our learning scheme that
needs to be improved, since various feature-selection al-
gorithms exist. Our ECOC approach to assigning multi-
ple predicted labels to a test patient has an implicit down-
side that these labels should have occurred in the training
dataset. Fundamentally, we believe that the purpose of
making model-driven pathology detections on ECG strips
is to enable their implementation in real-world conditions.
This means that noisy intervals in ECG signal recordings
have to be excluded before pathology prediction to avoid
high false alarm rates. Since ”noise” was not provided as
a separate label for strips, we believe that the usefulness
of our method is limited for real-world applications. In
addition, other pathologies do exist, including major ones,
which have not been included in the list of 24 pathologies
(although some of the them have been provided in a so-
called unscored list of pathologies). Since our model did
not include such possibility, it would by construction pro-
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vide a wrong label to a pathology outside the 24 scored
pathologies. Moreover, the fact that many participants in
the Challenge expressed doubts in the validity of the pro-
vided labels for parts of the training set brings the notion
that those labels might have been provided in a subjective
way, e.g. by doctors looking at ECG strips and pointing
out detected by eye morphologies, rather than an objective
way, where the presence of a pathology is demonstrated
unequivocally by other sorts of formal tests (sometimes
not based on ECG signals). This makes the learning task
extremely hard. What if a doctor fails to detect a given
pathology (and thus mis-labels ECG strips)? What if a
noisy signal is provided, say for a patient with (perma-
nent) ‘atrial fibrillation’ in a noisy signal environment and
a model predicts that ‘atrial fibrillation’ should be present
while a doctor may not spot it due to the noise? We believe
that in order to move closer to a real-world application of
our models, providing longer strips with proven patholo-
gies, where doctors can detect a pathology on part of the
ECG strip and cannot detect the pathology on other parts
of the strips, is a must. Last, we were not sure why the
so-called ‘CPSC’ training set of the Challenge contained a
substantial number duplicate strips. It could have been a
test for the Challengers to find this out, and therefore we
would like to report this in the current paper. Ignoring this
fact may introduce a huge bias in cross-validation perfor-
mance. We also note that we have purposefully avoided
any use of deep learning / neural network techniques so
as to make sure our results are replicable, meaning that the
learning process cannot be ‘’stuck’ in a local minimum and
thus provide different predictions if the learning process is
re-performed.

To conclude, this paper provided a summary of some
of our approaches for modeling the presence or lack of
presence of 23 cardiac pathologies based on provided 12-
lead ECG strips by the Physionet 2020 Challenge. We
have introduced two novelties in the analysis of such 12-
lead strips, which have been borrowed from other litera-
ture/areas, namely (1) ECOC approach for handling multi-
class problems, and (2) a stepwise multi-label approach
where the predictions from one stage are used as inputs for
another stage.
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