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Abstract

Cardiac abnormalities are a leading cause of death
and their early diagnosis are of importance for providing
timely interventions. The goal of 2020 PhysioNet/CinC
challenge was to develop algorithms to diagnose multi-
ple cardiac abnormalities using 12-lead ECG data. In this
work, we develop a wide and deep transformer neural net-
work to classify each 12-lead ECG sequence into 27 car-
diac abnormality classes. Our approach combines hand-
crafted ECG features, which were determined to be im-
portant by a random forest model, and discriminative fea-
ture representations that are automatically learned from a
transformer neural network. Our entry to the 2020 Phys-
ioNet/CinC challenge placed 1% out of 41 official ranking
teams (team name = prna). Using the official generalized
weighted accuracy metric for evaluation, we achieved a
validation score of 0.587 and top score of 0.533 on the full
held-out test set.

1. Introduction

Cardiovascular diseases are the leading cause of death
globally, resulting in 17.9 million deaths each year [1].
Early diagnosis of different cardiac abnormalities can help
clinicians provide timely interventions and lead to im-
proved clinical outcomes. The 2020 PhysioNet/CinC chal-
lenge focused on automated, open-source approaches for
classifying cardiac abnormalities from 12-lead ECG [2].
Traditional approaches for cardiac abnormality classifica-
tion often 1) apply signal processing techniques on the raw
ECG data; 2) extract handcrafted features using domain
knowledge to construct a feature vector; and 3) apply off-
the-shelf machine learning models to classify the feature
vector into different abnormality classes. Recently deep
learning approaches have been applied to this task and
achieve superior performance [3-6]]. Compared to tradi-
tional approaches, deep learning-based approaches can au-
tomatically learn informative feature representations that
are predictive of cardiac abnormalities in an end-to-end
manner. However, it can be beneficial to incorporate ex-
pert knowledge, represented by handcrafted features, into
deep learning models to enhance their performance.
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Figure 1. Architecture diagram of our wide and deep
transformer neural network. The left hand side shows the
the static “wide” features and the right hand side illus-
trates the deep network that consists of a series of convo-
lutional layers followed by a Transformer encoder module
and fully connected layers for multi-label classification.

2. Methods

In this work, we present a wide and deep transformer
network for multi-label classification of 27 ECG findings,
including for example, right and left bundle branch block,
atrial fibrillation and flutter, bradycardia/tachycardia, pre-
mature beats and wave abnormalities and inversions. Our
network combines static hand-crafted ECG features — so
called wide features [7] — together with deep features ex-
tracted directly from the raw ECG waveform via a neural
network. For encoding deep features, we first perform a
series of convolution operations to learn an embedding of
the raw ECG waveform. Learned embeddings are then fed
into a Transformer [8]] architecture, which relies entirely
on a parallelizable self attention mechanism. We selected
a Transformer architecture as it is faster to train than typ-
ical recurrent neural architectures that require sequential
computation. A final set of fully connected layers com-
bine both the ‘wide’ and ‘deep’ features to produce multi-
label classifications of ECG findings. Figure |I] gives an
overview of the complete system. In the following sec-
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tions, we provide detailed explanations of each component
of the system, as well as a discussion of the training and
implementation details.

2.1.  Pre-processing

Public training data supplied for the 2020 Phys-
ioNet/CinC challenge was sourced from four locations.
As recordings from separate hospitals could have differ-
ent sampling rates, we first upsample or downsample each
recording to S00Hz. We apply an FIR (finite impulse re-
sponse) bandpass filter with bandwidth between 3 - 45 Hz.
Each recording is also normalized so that each channels’
signal lies within the range of -1 to 1. We extract ran-
dom fixed width windows from each recording. We chose
T = 15 seconds and we apply zero-padding, if the se-
quence length is less than 7" seconds.

2.2. Wide and Deep Transformer Network

2.2.1. Wide

The wide [[7] component of our model allows for the
inclusion of static hand-crafted features into the network
architecture. We initially extracted over 300 ECG features
from lead II, including heart rate variability features (time,
frequency domain and non-linear), as well as morphologi-
cal features.

We trained an initial random forest model to investigate
feature importance. Based on these results we selected the
top 20 identified feature The top features selected are
shown in Table [I| We also add the static features of age
and gender to give a total of d,;4. = 22 features. Collec-
tively, these features were fed as input to the wide network
and concatenated with the learned outputs from the “Deep”
portion of the model (explained in the next section).

2.2.2. Deep

The second component of our model consists of the fol-
lowing modules:

1. An embedding network that extracts information di-
rectly from the ECG waveform segment

2. A Transformer [8]] encoder stack

3. A multi-label classification head.

The embedding network applies a series of convolu-
tion operations to the original ECG waveform to capture
the latent space representation of the signal. An approxi-
mate 20x downsampling factor is applied to the raw wave-
form, resulting in a sequence of embedded representations

IWaveform duration was identified as the top predictive feature, how-
ever we excluded this feature, as to not bias the classifier by learning false
associations between findings and sequence length.

(x1,...,2p), where x; € Rem> Tablelists the details for
each convolution operation applied.

The embedded representations are summed together
with positional encodings, p = (p1,...,pn), represent-
ing the order of the sequence p; € Rew. The result,
e = (x1 + p1,...,%n + pn), is then fed into a Trans-
former module. As the objective of our network is to per-
form classification as opposed to sequence prediction, our
Transformer module utilizes only an encoder stack made
up of N = 8 layers. Each of the encoder layers consists of
a multi-head self-attention mechanism sub-layer, followed
by a fully connected feed-forward network. As in [8]], we
utilize skip connections [9] and layer normalization [10]
within each sublayer. We choose an embedding dimension
dmoder = 256 and use 8 multi-head attention layers run-
ning in parallel.

We use scaled dot-product attention [8[] where for each
embedded representation, x;, a query, key and value vec-
tor are created (q, k, v, respectively) by multiplying x; by
learned network weight matrices, W&, W WV, The
q, k and v vectors are stacked into matrices @), K,V and
self attention is applied using Equation |1} where dj, indi-
cates the dimension of the key vector, dj, = 64.

T
Attention(Q, K, V) = softmax (?/[c% ) (1

Following the transformer module, global average pool-
ing is performed column-wise, followed by a fully con-
nected layer to produce dgc., deep features. We choose
ddeep = 64. The dyiqe features from Section are
concatenated together with the dgc.p, features and a final
fully connected layer is applied to match the number of
classes, djgss-

2.3. Implementation Details

We excluded from consideration the 84 unscored classes
and chose to classify only SNOMED CT codes that
were included in the challenge evaluation metric [2], i.e
dciass = 27. We utilized a standard binary cross entropy
loss function averaged over each of the d ;s classes. Dur-
ing model training we monitored average AUC and used
early stopping when validation AUC had stopped improv-
ing for 5 epochs.

We used the Noam optimization [8]] procedure, which
wraps an Adam optimizer (8; = 0.9,82 = 0.98 and
e = 107Y) within a scheduling routine that increases the
learning rate linearly during a warm-up stage and sub-
sequently decreases it, proportional to the inverse square
root of the step number [[8]. We chose 4000 as the num-
ber of warm-up steps. The complete model consists of
13,643,885 trainable parameters, which were initialized
using Xavier uniform initialization [[11]. Our model was
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Rank Feature | Hyper-Parameter | Value |

1 HRmzn
2 T wave multiscale permutation entropy o Global
3 HR, 00 ECG window size (secs) 15
4 T wave multiscale permutation entropy median Sampling frequency (Hz) 500
5 RMSSD Batch size 128
6 P wave correlation coefficient Wide feature size, dyide 22
7 RR interval median Deep feature size, dgeep 64
8 Heart rate Number of classes, djqss 27
9 RR interval intra-cluster distance, cluster 3
10 RR interval Fisher information Transformer
11 pNN60 Number of encoding layers 8
12 SWT decomposition level 4 entropy Embedding size, doder 256
13 RR interval intra-cluster distance, cluster 2 Number of heads 8
14 Heart rate activity Dimension of feed forward layer 2048
15 A RRin Size of key, query and value vectors, dy, dg, d,, 64
16 T wave permutation entropy o Dropout 0.1
17 P wave sample entropy o
18 SWT decomposition level 3 entropy Fully connected layers
19 Median p wave approximate entropy EC 1 size 64
20 R peak approximate entropy FC 2 size 27

Table 1. Top 20 features as discovered from a Random Dropout 0.2

Forest model, i, o are mean and standard deviation, ARR Table 3. A listing of hyper-parameters selected to train

is the difference of RR intervals and SWT stands for sta-
tionary wavelet transform.

Conv. | Input | Output | Kernel | Stride | Padding
layer | size size size

1 12 128 14 3 2

2 128 256 14 3 0

3 256 256 10 2 0

4 256 256 10 2 0

5 256 256 10 1 0

6 256 256 10 1 0

Table 2. Convolution layer settings

trained on the data-sets that were made publicly available
for the 2020 PhysioNet/CinC challenge and no other ex-
ternal data sources were used. Models were training us-
ing PyTorch on two P100 GPUs with a batch size of 128.
Each epoch took roughly 5 minutes to train and conver-
gence typically took place within 30 epochs. Table [3]sum-
marizes the selected hyper-parameters.

3. Results

We begin by first splitting the data-set into 10 folds
using iterative stratification [[12]]. We train and evaluate
our models using 10-fold nested cross-validation, whereby
eight folds are used for model training, one for validation
and the remaining acts as a held-out test set. This is re-
peated ten times to produce ten trained models and the

the wide and deep neural network model for ECG finding
classification.

Fold 10 seconds 15 seconds
1 0.519 0.452
2 0.508 0.486
3 0.459 0.481
4 0.530 0.581
5 0.484 0.587
6 0.508 0.565
7 0.484 0.566
8 0.484 0.556
9 0.493 0.525
10 0.484 0.532
Average 0.496 + 0.021 0.533 + 0.046

Table 4. 10-fold nested cross validation results showing
challenge scores for different window sizes.

challenge score of each is averaged to get an estimate about
how well the model is performing. Cross validation results
are shown in Table

We submitted an ensemble of the trained models to the
challenge server. Due to computational and training time
limitations we restricted our final submitted model to an
ensemble of the top three performing models from Table
Each model in the ensemble uses a separate thresh-
old to make binary decisions for each of the d.j,ss = 27
classes. Optimal thresholds were computed on the models’
validation set to maximize the challenge metric. A final
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Ranking | Team name Test Database 1 | Test Database 2 | Test Database 3 | Full Test Set
1%¢ prna 0.761 0.558 0.492 0.533
ond Between_a_ROC_and_a_heart_place 0.845 0.639 0.412 0.520
3rd HeartBeats 0.852 0.649 0.396 0.514

Table 5. The official Top 3 results on the full test set of the PhysioNet/CinC challenge

classification decision is then made by combining the bi-
nary decisions from each classifier. In particular, we used
the strategy whereby a class was predicted to be positive,
if any classifier in the ensemble predicted that class to be
positive. The final results are shown in Table[5] Our entry,
prna, achieved the top score (0.533) on the full test set.
Table |5| compares our approach to the 2" and 3" place
finishers in the challenge.

4. Discussion and Conclusions

We made several observations about the performance of
our wide and deep transformer network:

1. Bradycardia was trickier to score than just merely using
HR < 60 bpm. Some cases that looked like bradycardia
were actually not labeled as such by the classifier.

2. Low QRS voltages were most often confused with atrial
fibrillation, T wave abnormality or sinus rhythm. It is pos-
sible that the max-min normalization performed in the data
pre-processing step may have influenced this.

3. T wave abnormality or inversion was sometimes con-
founded by noise.

4. Atrial flutter was often mixed up with atrial fibrillation.
5. Prolonged QT intervals were sometimes over detected
(when the rhythm was actually normal), this is likely due
to difficult delineation of the fiducial points in borderline
cases.

In addition to the Transformer module in the architec-
ture described above, we also experimented with using re-
current neural networks instead (in particular, GRU). We
found that the Transformer module did not necessarily lead
to better performance than an RNN module, but that it did
allow for faster model training and iteration. Finally, the
Noam optimization [8]] procedure was observed to be cru-
cial for achieving a reasonable challenge score when using
the Transformer module and we observed large differences
in final scores achieved if it was not used. In future work,
we would like to utilize information from the remaining 88
classification labels, which were not included in the chal-
lenge evaluation metric, to take advantage of any potential
label interactions.
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