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Abstract

Introduction: We describe the creation of a deep neu-
ral network architecture to classify cardiac abnormal-
ity from 12 lead ECGs. The model was created by the
team “between a ROC and a heart place” for the Phys-
ioNet/Computing in Cardiology Challenge 2020.

Methods: ECGs were downsampled to 257 Hz and then
set to a consistent duration by randomly clipping or zero-
padding the signal to 4096 samples. To learn effective
features, we created a modified ResNet with larger kernel
sizes that models long-term dependencies. We embedded
a Squeeze-And-Excitation layer into the modified ResNet
to learn the importance of each lead, adaptively. A sim-
ple constrained grid-search was applied to deal with class
imbalance.

Results: Using the bespoke weighted accuracy metric,
we achieved a 5-fold cross-validation score of 0.684, sen-
sitivity and specificity of 0.758 and 0.969, respectively. We
scored 0.520 on the full test data, and ranked 2nd out of
the 41 teams that participated in the challenge.

Conclusion: The proposed prediction model performed
well on the validation and hidden test data. Such models
may be potentially used for ECG screening or diagnosis.

1. Introduction

We consider the task of cardiac abnormality classifica-
tion from 12-lead electrocardiogram (ECG) recordings of
varying sampling frequency and duration. 12-lead ECGs
are commonly used in clinical care to discern cardiac ab-
normalities such as arrhythmias, myocardial infarction, or
coronary occlusion [1].

Each of the 12 leads correspond to the heart’s electrical
activity from a distinct angle, and can be mapped to the
anatomy of the heart. A skilled interpreter can therefore
use ECG signals from multiple leads to localise the source

of a cardiac abnormality.
In practice, human ECG interpretation is limited by the

availability of a trained cardiologist and the time required
to synthesize information from the 12-lead signal (and doc-
ument findings). In the absence of cardiology experts,
other clinicians may make preliminary interpretations, but
are demonstrably less accurate [2].

Computer-aided interpretation has been suggested as
one approach for circumventing these resource constraints,
despite historical limitations in accuracy [3]. Modern deep
learning methods may be able to improve interpretation ac-
curacy. Until recently, the use of such techniques for 12-
lead ECGs has been impractical due to the shortage of la-
belled training data. There remains room for improvement
over initial promising results [4].

The release of a new large, labelled, multinational, 12-
lead ECG data set as part of the 2020 Physionet Challenge
[5] presents a unique opportunity to tackle multi-class car-
diac abnormality detection.

We tackle the problem by developing a deep neural net-
work architecture. Our architecture acknowledges the im-
portance of the spatial relationship between the ECG chan-
nels by using a squeeze-and-excitation (SE) block. The SE
approach was developed by Hu et al. who showed sig-
nificant improvements over previous deep neural network
architectures when introduced as part of the 2017 ILSVRC
classification challenge [6].

2. Methods

Our objective was to create a model that could ac-
curately classify 12-lead ECG recordings into multiple
classes of 27 clinical diagnoses. Three pairs of classes
were scored identically. For this task, we considered these
pairs to be identical and simply combined identical pairs,
so that only 24 classes were considered. As in clinical
practice, recordings may have multiple diagnoses.
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The data set used to train and validate the model con-
sisted of 37749 12-lead ECG recordings from four differ-
ent sites. A separate data set, that included data from a
fifth site, was withheld for testing. The recordings were of
varying frequency (257 Hz - 1000 Hz) and duration (6 s
- 60 s). A very small selection (n=74) of the data set had
a duration of approximately 30 minutes. Each ECG was
associated with age and gender. A detailed description of
the data and the classification task is presented in [5].

2.1. Data pre-processing

All ECGs were resampled to the minimum frequency of
257 Hz. To allow a fixed input size in the deep learning
model, each ECG was set to be 4096 points, i.e. just un-
der approximately 16 seconds. During training, we zero-
padded shorter duration signals randomly to 4096 points.
Likewise, we used a window with the length 4096 to ran-
domly clipped longer duration signals.

We scaled age into the range [0,1]. Both age and gender
were encoded using one-hot encoding, with two additional
mask variables to represent missing values.

2.2. Model description

After obtaining the input signals, we designed an im-
proved ResNet to assign the 12-lead ECG recordings into
the 24 diagnostic classes. As shown in Fig. 1, the improved
ResNet consists of one convolutional layer followed by
N = 8 residual blocks (ResBs), each of which contain
two convolutional layers and a squeeze and excitation (SE)
block (Fig. 2). Due to the fact that some samples have mul-
tiple classes of 27 clinical diagnoses, instead of using the
softmax function in trditional classification problem, we
assumed that each class was independent and used the sig-
moid function for each output neurons to cope with this
multi-task problem.

The first (convolutional) layer and the initial two ResBs
units have 64 convolution filters. The number of filters in-
creases by a factor of two for every second ResB unit. The
feature dimension is halved after the max pooling layer,
and the third, fifth, and seventh ResBs.

The improved ResNet has four modifications from the
original ResNet [7]. First, we modified the final fully con-
nected (FC) layer to incorporate patient age and gender.
These two features were passed through another FC layer
with 10 neurons prior to inclusion in the final layer. Sec-
ond, we used a relatively large kernel size of 15 in the first
convolutional kernel, and a large kernel size equal to 7 in
the latter convolutional kernels. Previous work has shown
that large kernel sizes are more helpful for networks to
learn meaningful features [8]. Third, as shown in Fig. 2,
we added a dropout layer with a drop out rate of 0.2 be-
tween two convolutional kernels in each ResB to reduce

the likelihood of overfitting. Finally, we added a SE block
into each ResB depicted in Fig. 2. The SE block has been
to model channel interdependencies, and in this case, we
incorporate it to model the spatial relationship between the
ECG channels. The SE block, introduced by Hu et al. [6]
uses a multi-layer perceptron (MLP) with one hidden layer
to calculate the importance of the channels. The parame-
ter r = 16 in Fig. 2 denotes the reduction factor, which
controls the capacity of the MLP.

Figure 1. The proposed network architecture.

Figure 2. Residual block (ResB) and SE block.

The training error for this multi-task problem was aver-
age binary cross-entropy loss. The loss was optimised us-
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ing the Adam optimizer with an initial learning rate 0.003.
The learning rate was reduced tenfold in the 20th and 40th
epochs, and the model was trained for in total 50 epochs
with a batch size of 64.

2.3. Model evaluation

Five-fold cross-validation was used to assess the perfor-
mance of the model. For the validation and test signals,
we continued to zero-pad any shorter duration signals with
fewer than 4096 samples. For signals longer than 4096
samples, we segmented the signals into multiple patches
with a fixed overlap O = 256, and the final overlap was
adaptive to the length of the signal. An example with the
length 10000 is depicted in Fig. 3. The number of patches,
P , for a single signal can be formulated as:

P = ceil(
L− 4096

4096−O
) + 1 (1)

where ceil(·) rounds a number upward to the nearest inte-
ger. We used the mean probabilities from the P patches to
classify the recording.

Figure 3. An example of segmenting the validation sig-
nals.

In addition to sensitivity and specificity, we report
model performance using a bespoke metric, snormalized,
as described in [5]. This metric is a weighted accuracy
that rewards incorrect classifications with similar risks or
outcomes to the true class.

2.4. Threshold optimisation

Successful classification was heavily dependent on solv-
ing issues related to class imbalance. The training data
suffered from significant class imbalance.

Kang et al. [9] previously suggested that accurate rep-
resentation is possible even in the presence of class imbal-
ance. If the representation is accurate, then strong classifi-
cation performance may be achieved by adjusting the clas-
sifier. By separating representation and classification, we

avoid having to include extra class-balancing approaches
such as data re-sampling.

For the single task problem, researchers often re-balance
the decision boundaries of classifiers via normalizing the
classifier weight norms. In our multi-task problem, we
used a similar approach, attempting to adjust the decision
boundaries of the classifier by optimizing the thresholds
corresponding to each class.

However, searching for the joint set of optimal thresh-
olds becomes intractable as the number of classes in-
creases. The current problem would require searching in
a 24 dimensional space, which we considered to be too
time-consuming.

Instead, we designed a simple constrained grid-search
method to optimize the thresholds relied on a basic as-
sumption that each class is independent. This method con-
sists of two steps: (1) Set the same thresholds to all the
classes and search for the optimal thresholds in [0, 1] with
a step 0.1; (2) Optimize each threshold in [0, 1] with a
step 0.01 separately, when other thresholds are fixed (also
called one cycle of coordinate descent).

2.5. Ensemble learning

To improve the robustness of the classifications, we cre-
ated an ensemble of five models trained via five-fold cross-
validation. The thresholds of each model was optimized by
its split validation set, and ECGs were classified according
to the majority vote.

Due to technical issues, the ensemble model was trained
locally, but could not be trained and tested on the ex-
ternal challenge virtual machines. Experience in related
domains suggests that the ensemble model performance
would likely improve on the single model.

3. Results

The results of five-fold cross-validation results on the
training data set and the intermediate test set are shown
in Table 1. Our best performing improved ResNet
with optimized thresholds for three completely hidden
test set was chosen as the final submission resulting in
snormalized=0.520 as the team “between a ROC and a
heart place”. From the results, we observe that threshold
optimization plays an important role in improving the per-
formance, especially for the bespoke metric. We noted that
there was only a small difference between the online (inter-
mediate test) and offline accuracy of the improved ResNet
model with optimized thresholds. We therefore initially
believed that the model did not overfit to the training data,
but the subsequent final score suggests otherwise.

It is also worth mentioning that the final scores
snormalized for three different hidden test sets were 0.845,
0.639, and 0.412, respectively. The first two hidden test
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sets were from the same sites of the training sets, and thus
their scores were higher. On the contrary, the last one was a
totally hidden undisclosed set, and thus its score was much
lower. That is, the improved ResNet failed to migrate from
multiple data sets to a completely different data set effec-
tively.

Table 1. Model Results with different thresholds us-
ing five-fold cross-validation. Sub1: an improved ResNet
without any threshold optimization; Sub2: an improved
ResNet with the thresholds optimized only by the step one;
Sub3: an improved ResNet with thresholds optimized by
constrained grid-search.

Method Sens. Spec. snormalized Online Acc.
Sub1 0.599 0.986 0.630 0.607
Sub2 0.742 0.969 0.675 0.666
Sub3 0.758 0.969 0.684 0.672

4. Discussion

We have developed a deep learning model that accu-
rately classifies 24 unique cardiac abnormalities from 12-
lead ECGs. Our approach used a deep neural network
architecture that combined an improved ResNet with an
SE layer. The addition of the SE layer modeled the spa-
tial relationship between channels. The improved ResNet
learned the features effectively from the time series, as
demonstrated by the model performance metrics. The ap-
proach ought to generalise well, given the size and hetero-
geneity in the training data set.

Like many other deep learning approaches, the results
from the presented model are not easily explainable in the
sense that we cannot determine the specific ECG morphol-
ogy that results in a classification. It ought to be possible
extend our model to accommodate better explainability via
attention or learned prototypes [10, 11].

We further note that the upper bound on accuracy of
the model is potentially limited by noisy training data la-
bels. Methods that explicitly model uncertainty in the la-
bels may lead to more robust performance.

Meanwhile, we also observe that the improved ResNet
cannot successfully migrate from multiple training data
sets to a completely different test data set. Thus, methods
based on transfer learning and domain generation might be
used to improve the transferability of models

In future work, we intend to improve model perfor-
mance by first conducting cluster analysis of false classifi-
cations to determine common modes of failure. An ensem-
ble approach using classifiers with hand-crafted features
may then allow better prediction of such modes.
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