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Abstract

The 12-lead electrocardiogram (ECG) is a major diag-
nostic test for cardiovascular diseases and enhanced au-
tomated analysis tools might lead to more reliable diagno-
sis and improved clinical practice. Deep neural networks
are models composed of stacked transformations that learn
tasks by examples. Inspired by the success of these models
in computer vision, we propose an end-to-end approach for
the task at hand. We trained deep convolutional neural net-
work models in the heterogeneous dataset provided in the
Physionet 2020 Challenge and used an ensemble of seven
of these convolutional models for the classification of ab-
normalities present in the ECG records. Ensembles use the
output of multiple models to generate a combined predic-
tion and are known to improve performance and general-
ization when compared to the individual models. In our
submission, we use an ensemble of neural networks with
the architecture similar to the one described in Nat Com-
mun 11, 1760 (2020) for 12-lead ECGs classification. Our
approach achieved a challenge validation score of 0.657,
and full test score of 0.132, placing us, the “Code Team”,
in 28 out of 41 in the official ranking.

1. Introduction

Cardiovascular diseases are the leading cause of death
worldwide [1] and the electrocardiogram (ECG) is a ma-
jor tool in their diagnoses. Deep neural networks (DNNs)
have recently achieved striking success in tasks such as
image classification [2] and speech recognition [3]. Re-
cent developments have demonstrated the ability of this
technology to produce accurate ECG classifiers both in the
single-lead [4] and in the 12-lead setup [5].

The 2020 Physionet Challenge [6] for the classification
of 12-lead ECG involves several of the difficulties that are
present in deploying a new ECG classifier that has not been
fully considered by existing DNN-based solutions. The

challenge presents a classification task that includes signif-
icantly more classes compared to previous challenges [7]
and is based upon heterogeneous data for training and test-
ing, which comes from four different countries and is col-
lected and annotated under different conditions.

We use the challenge as an opportunity to benchmark
and to improve the use of convolutional network architec-
tures for 12-lead ECG classification. We improve on our
previous work [5] in two ways. Firstly, we describe a sim-
ple approach to make it possible to work with signals with
variable length. Secondly, we show the strengths of using
an ensemble of those models.

2. Challenge description

The 2020 Physionet challenge [6] requires the partic-
ipants to produce models capable of classifying 12-lead
ECGs according to 27 classes. These classes cover dif-
ferent possible rhythms, morphologies and diagnosis. Six
databases, from four different countries (United States,
Russia, Germany and China), were made available for
training the model, summing up to a total of more than
43 thousand ECG records.

The models submitted to the challenge are scored using
a separate test set that is not available to the participants.
The set contain unseen records both from the same sources
as the training data and from an additional source that was
not available to participants.

The challenge score metric is a weighted accuracy met-
ric. Let C denote a multi-class multi-label confusion ma-
trix, for which the diagnosis of each ECG record is ac-
counted for. In case of multiple predictions or multiple
simultaneous labels for one record, each prediction is as-
signed partial credit: it is divided by (the maximum of) the
number of prediction or the number of classes. The score
metric is given by the weighted sum:

∑
i

∑
j wi,jCi,j ,

where the weights wi,j are set according to the relative
clinical relevance of an (in-)correct prediction.
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3. Model

3.1. Architecture and training procedure

We used a convolutional neural network architecture
similar to the one proposed in [5] for 12-lead ECG clas-
sification. The architecture is an adaptation to unidimen-
sional signals of the image-classification residual network
proposed in [8]. This architecture allows deep neural net-
works to be efficiently trained by including skip connec-
tions. We have adopted the modification in the residual
block proposed in [9], which place the skip connection in
the position displayed in Figure 1.

Figure 1. Residual neural network. The uni-dimensional
neural network architecture. Adapted from [5].

We re-sample all ECG records at 400 Hz and, for
this sample rate, the training dataset contains ECGs with
lengths ranging from 2,000 to 720,000 samples. The
model processes batches with a fixed length of 4,096 sam-
ples. An exam that exceeds this amount of samples is split
over multiple batches. All splits share the same label. If
necessary, the last batch of an exam is filled with zeros to
complete 4,096 samples.

The network consists of a convolutional layer (Conv)
followed by 5 residual blocks with two convolutional lay-
ers per block. The output of each convolutional layer is
rescaled using batch normalization (BN) [10], and fed into
a rectified linear activation unit (ReLU). Dropout [11] is
applied after the nonlinearity with rate 0.5.

The convolutional layers have filter length 17, starting
with 4,096 samples and 64 filters for the first layer in the
first residual block and increasing the number of filters by
64 and subsampling by a factor of 4 every residual block
(except for the first one). Max Pooling [12] and con-
volutional layers with filter length 1 (1x1 Conv) are in-
cluded in the skip connections to make the dimensions
match those from the signals in the main branch.

The DNN weights are adjusted during training by min-
imizing the average cross-entropy using the Adam opti-
mizer [13] with default parameters and learning rate lr =
10−3. The training runs for 200 epochs, with the learning
rate being reduced by a factor of 10 at epoch 75, 125, and

175. The neural network weights are initialized as in [14]
and the biases are initialized with zeros.

3.2. Ensemble model

The neural network architecture described above is
trained multiple times starting from different randomly ini-
tialized weights. The trained models are combined to gen-
erate an ensemble of models for the task by averaging the
output, i.e. the logits of all trained models [15]. The
motivation behind using ensembles for neural networks is
well established: The non-convex loss of deep neural net-
works is known to have multiple local minima with sim-
ilar loss values. Starting the optimization process from
different random initializations will let the neural network
converge to different local optima. However, the learned
functions vary and will therefore yield diverse predictions
which do not necessarily overlap in which input they miss-
classify [16]. This yields ensembles of DNNs successful
in obtaining higher performance and better generalization
capabilities over the individual models. In this work, we
use a total of seven models.

3.3. Test-time procedure

The test-time procedure is depicted in Figure 2. As
in training time, all records are re-sample to 400 Hz and
records that exceed 4,096 samples are split into multiple
batches (split in batches). For an exam that has
been split into multiple batches, the residual neural net-
work, described in Section 3.1 (ResNet), is used to com-
pute an output vector (logits) and the average of the values
of each split is computed (avg logits). This is done
for each one of the n = 7 ensemble models and the results
are averaged over the ensemble values (avg ens). This
averaged logit is then fed into a sigmoid function (σ) which
computes a value between 0 and 1 for each of the classes.
The result can be understood as the probability of the oc-
currence of the given class and is multiplied by a correc-
tion factor accounting for class imbalance. If the obtained
value is above the threshold of 0.5, the corresponding class
is considered to be present. The correction factor we used
is one over the relative number of occurrences of a class in
the training set (and can be understood as a prior).

4. Results

During the official phase, our team has submitted 5 mod-
els to be scored using the challenge hidden test set. Table 1
summarizes the entries. The first entry submitted to the
challenge consists of a single convolutional neural network
model, described in Section 3.1.

This first submission uses an output layer based on a
sigmoid activation function to classify the records into 27
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Figure 2. Test-time prediction. Ensemble of models
which can handle variable length ECGs by splitting them
into batches.

entry score short description
#1 0.622 DNN model described in Section 3.1
#2 0.626 Jointly predict some of the classes
#3 0.637 Larger weight for the top-k predictions

#4, #5 0.657 Ensemble of 7 models

Table 1. Challenge submissions. Challenge metric on the
partial test dataset from the official challenge phase for the
5 models submitted by the ”Code Team”.

classes. The challenge score metric, however, does not pe-
nalize the model when it mixes up between three of the
pairs of the 27 classes. Hence, in our second submission,
we collapsed these pairs of classes (resulting in a sigmoid
output layer with output of size 24) to account for that.

The sigmoid output layer predicts the occurrence or non-
occurrence of a given class individually. However, we
would not like to have too many simultaneous predictions,
since these might get penalized by the challenge metric.
Hence, heuristically, we limit the number of simultaneous
diagnoses by the model to k = 6. A modification in our
third submission weights the sigmoid output layer from the
largest to the smallest value with a decreasing weight vec-
tor w with length k. Entries in w with i > k are zero to
avoid more than k predictions for the same exam.

Finally, in the fourth and fifth submissions (which are
identical) we used an ensemble of seven models. Each one
of the models in the ensemble is identical (except the ran-
dom initialization seed) to our third submission.

Our best result in the validation set (submission #5)
achieved the score of 0.132 in the full test set placing us
in the 28-th position out of 41 teams in the official rank-
ing. The test set comes from three different sources, with
our implementation achieving 0.830 on the 1st set, 0.181
on the 2nd and 0.023 on the 3rd one. Our implementation
is available at: github.com/antonior92/physio
net-12ecg-classification.

5. Model design and analysis

For the official submissions described above, we used
the entire dataset (that was made available to us) for train-
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Figure 3. Performance during training. Challenge score
evaluated on the hold-out validation data as a function of
the number of epochs (for the initial 70 epochs). The full
line indicates the median for 7 models and the shaded area
illustrates the maximum and minimum.

ing. However, in order to set the hyper-parameters and
compare between different DNN architectures, we divided
the training data into 70%-30%, using the 30% split to
evaluate the model. We conducted a random search with
different combinations of kernel size in {9, 15, 17 and 35},
learning rate in [0.001, 0.01] range and a dropout rate in
(0, 1). We tried around 20 different configurations and the
one used in the submission was among the best candidate
configurations.

The 70%-30% setup is used to generate the results in
Figures 3, 4 and 5. We trained 7 ensemble models in the
scenario described above (initialized with different seeds),
the training history of these models is displayed in Fig-
ure 3. The performance of the ensembles of the models
is evaluated in Figure 4, which gives the challenge met-
ric as a function of the ensemble size for all combinations
of ensembles with size varying from 1 to 7 obtained from
combinations of these 7 models. The figure underlines our
design choice of using ensembles to boost the final perfor-
mance. The confusion matrix for the final ensemble of 7
models is displayed in Figure 5.
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Figure 5. Confusion matrix. The confusion matrix C
(see Section 2) for all classes scored by the challenge on
the held out validation data. Colors are in log scale with
low values of co-occurrence in dark and high values in
bright. For a full description of the classes see [6].
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