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Abstract

Automated detection and classification of clinical elec-
trocardiogram (ECG) play a critical role in the analysis
of cardiac disorders. Deep learning is effective for auto-
mated feature extraction and has shown promising results
in ECG classification. Most of these methods, however,
assume that multiple cardiac disorders are mutually exclu-
sive. In this work, we have created and trained a novel
deep learning architecture for addressing the multi-label
classification of 12-lead ECGs. It contains an ECG rep-
resentation work for extracting features from raw ECG
recordings and a Graph Convolutional Network (GCN) for
modelling and capturing label dependencies. In the Phy-
sioNet/Computing in Cardiology Challenge 2020 [1], our
team, Leicester-Fox, reached a challenge validation score
of 0.395, and full test score of -0.012, placing us 34 out of
41 in the official ranking.

1. Introduction

The electrocardiogram (ECG) is a clinical tool widely
utilised for the clinical diagnosis of multiple cardiac dis-
eases. The standard 12-lead ECG records resulting elec-
trical activity of the heart collected from different angles,
including six limb leads from the vertical plane and six
chest leads from the horizontal plane [2]. However, man-
ual interpretation of ECG is a time-consuming task, and re-
quires experienced cardiologist [3]. Thus, computer-aided
interpretation has become increasing in the process of clin-
ical diagnosis, since such technique assists the cardiologist
with health care decision making [3].

In traditional approaches, a variety of features are firstly
extracted from ECG recordings using different techniques,
such as Discrete Wavelet Transform (DWT) [4] and Pan
Tompkins algorithm [5]. Then, a classification method,
such as Support Vector Machine (SVM) [6], Hidden
Markov model (HMM) [7] or random forests [8], is em-
ployed for classification. However, these approaches rely
heavily on the carefully selected features, so is difficult
to handle multi-class classification tasks using these ap-

proches [9]. Deep neural networks (DNNs) have recently
achieved great success in detecting cardiovascular abnor-
malities from single-lead or 12-lead ECGs [10, 11]. The
major advantage of DNNs is that they are able to auto-
matically learn useful features from raw input data without
requiring data preprocessing, feature engineering or hand-
crafted rules [10]. These methods, however, treat the prob-
lem of multiple cardiac disease recognition as a multi-class
classification problem, where multiple cardiac abnormali-
ties are regarded as mutually exclusive classes. In reality, it
is possible that more than one cardiac disorders might exist
concurently during the collection of ECG signals. There-
fore, further work is needed to identify the correlations
among labels instead of treating each label independently.

In the present work, we sought to 1) develop a novel
end-to-end multi-label cardiac disease detection frame-
work, where a deep CNN model and a bi-directional gated
recurrent unit (GRU) are combined to learn high-level fea-
ture representation of ECG, and a GCN is employed to
embed our label graph into inter-dependent cardiac dis-
ease classifier which is trained using our proposed class-
aware Binary Cross-entropy Loss, 2) design a correlation
matrix based on label dependencies to guide the informa-
tion propagation among nodes in GCN, 3) demonstrate the
effectiveness and efficacy of our architecture on the ECG
dataset of PhysioNet/CinC Challenge 2020 [1].

2. Model Architecture

Overall framework of our deep learning model is shown
in Fig.1. Our network consists of two modules for multi-
label ECG diagnosis. In the first module, a deep 1D CNN
followed by a bi-directional GRU layer was developed
to learn ECG representations. In the second module, a
three-layer GCN model was proposed to learn the inter-
relationships of labels. Finally a class-aware Binary Cross-
entropy Loss is proposed to jointly train both networks.

2.1. ECG representation network

In this module, we firstly applied Convolutional Neural
Networks (CNNs) to learn high-level feature representa-
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Figure 1. Overall framework of our deep learning model.

tion of ECG recordings. In order to make CNNs tractable
for optimisation, a Residual Neural Network similar to
[10,11] was adopted to add a shortcut connection that skips
two convolutional layers. The network consists of a convo-
lutional layer (Conv) followed by 16 residual blocks with
two convolutional layers per block. The width of filters is
fixed with 16 in every convolutional layer. The number of
filters per convolutional layer starts with 32, and after the
first four residual blocks, it doubles at the first convolu-
tional layers in every fourth residual block. Every second
residual block subsamples its inputs by a factor of 2. We
applied a Batch Normalisation (BN) for rescaling the out-
put of each convolutional layer and a rectified linear acti-
vation unit (RELU) as a nonlinear activation function. The
dropout layers with a rate of 0.2 after RELU were used to
prevent overfitting. A bi-directional GRU layer was finally
applied to extract temporal features from the time series
of CNN feature. We defined the ECG representation net-
work as a mapping function fcnn+GRU and the ECG-level
feature F:

F = fcnn+GRU (E; θcnn+GRU ) ∈ RD (1)

where θcnn+GRU andD denotes model parameters and the
output dimension of the ECG representation network and
E is an input of 12-ECG recording.

2.2. GCN based multi-label classification

A novel GCN based model has been used to capture the
label correlations for multi-label classification of cardiac
diseases. GCN was firstly proposed in [12] to generalise
CNNs from regular domain, such as image and speech, to
irregular domains, like irregular graphs. Kipf et al. [13]
also introduced GCN to perform semi-supervised classifi-
cation on graph-structured data, which was motivated from
a first-order approximation of spectral graph convolutions.
Inspired by these approaches, we sought to implement a
GCN based mapping function to learn label dependencies.
Unlike standard convolutions that operate on data lying on
Euclidean space, the goal of GCN is to learn a function
f(·, ·) of feature matrix H l ∈ Rn×dl

on a graph G, where
n denotes the number of nodes and d indicates the dimen-
sionality of node features. The function f(·, ·) of GCN
layer l takes the feature matrixH l and a representative ma-
trix A of the graph G structure as inputs, and updates the
node features as H l+1 ∈ Rn×dl+1

. Every GCN layer can
then be written as a non-linear function, accordingly:

H l+1 = f(H l, A) (2)

Following the layer-wise propagation rule of [13]:

f(H l, A) = σ(ÂH lW l) (3)
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whereW l ∈ Rdl×dl+1

is a weight matrix to be learned and
σ(·) is a non-linear activation function like the RELU. Â
denotes the normalised version of A.

In the present work, stacked GCN layers were used to
learn the inter-relationships of labels. The input of the first
GCN layer is the X ∈ RC×d with C denoting the num-
ber of categories and d denoting the dimensionality of the
one-hot label representation. For the last layer, the output
matrix is Z ∈ RC×D, where D is the dimensionality of
the ECG representation.

Eq. 3 shows that the layer-wise propagation of GCN
is based on a normalised matrix Â which describes the
graph structure in a matrix form. To construct matrix Â,
the co-occurrence patterns of labels was mined, and then
a correlation matrix between labels was defined. The la-
bel correlation dependency was modelled as the condi-
tional probability. As shown in Fig. 2, each entry (x,y)
of the matrix represents the probability of the occurrence
of label x (along rows) when label y (along column) ap-
pears. To calculate the conditional probability in each en-
try (x,y), the occurrence of label pairs is counted and di-
vided by the occurrence of label y in the training set, i.e.,
P (x|y) = P (x,y)

P (y) .

Binary cross-entropy is widely used for multi-label clas-
sification problems, however it evaluates each label inde-
pendently without considering label correlation [14]. Here,
the output of our GCN network is introduced and a class-
aware binary cross-entropy loss is defined as follows:

L =

C∑
c=1

yc log(
1

1 + e−F ·Z )+(1−yc) log(1− 1

1 + e−F ·Z )

(4)
where yc = {0, 1} denotes the corresponding target binary
value of label c.

2.3. Training

All 12-ECG recordings were firstly resampled to a 500
Hz sampling rate. The ECG recordings which are shorter
than 18 seconds were zero-padded. Our network took this
signal as input and output one prediction every 512 sam-
ples. The class-aware binary cross-entropy loss between
the predictions and the labels from the training set was ap-
plied to optimise our network. Our network was trained for
100 epochs using Adam stochastic gradient descent (SGD)
optimiser with random initialisation of the weights. The
batch size and the learning rate were set to 32 and 0.001
respectively. The learning rate was reduced by a factor
of 10 when the validation loss stopped improving for two
consecutive epochs.

Figure 2. Conditional probability table between nine la-
bels.

3. Experiment

3.1. Dataset

The dataset was the one provided by the Phys-
ioNet/CinC Challenge 2020. This dataset was from multi-
ple sources:China Physiological Signal Challenge in 2018
(10330 recordings), St. Petersburg INCART 12-lead Ar-
rhythmia Database (75 recordings), Physikalisch Technis-
che Bundesanstalt (22386 recordings) and Georgia 12-
Lead ECG Challenge Database (10344 recordings). Each
ECG recording has one or more labels from different type
of abnormalities in SNOMED-CT codes.

3.2. Evaluation Metric

The first evaluation metric in the competition is de-
signed to award full credit to correct diagnoses and partial
credit to misdiagnoses. It is calculated as follows:

s = Σijwijaij (5)

where aij is the number of recordings in a database that
were classified to class i ∈ C but actually belong to class
j ∈ C. All aij construct a multi-class confusion matrix.
A weight matrix W = [wij ] was pre-defined based on the
similarity of treatments or differences in risks.

Macro-F1 was also adopted as our second evaluation
metric, which is calculated by averaging the F1 values over
all the classes, as shown below:

Macro-F1 =
1

C

C∑
i=1

TP

TP + 1
2 (FP + FN)

(6)

Page 3



where C represents the number of classes (C = 25 in our
case), TP, FP and FN represent the numbers of true posi-
tive, false positive and false negative samples respectively.

4. Results

In the present work, four controlled experiments were
conducted to verify the effectiveness of every component
in our proposed framework including Residual Blocks, bi-
directional GRU and GCN. For each experiment, 5-fold
cross-validation was performed on training set. The in-
cremental development of our approach is illustrated in
Table 1. An one dimension CNN (1DCNN) approach
without residual blocks was firstly tested, where the Chal-
lenge Metric and F1 score were 0.503 and 0.481. Then
we augmented the CNN architecture with the residual
blocks and increased the Challenge Metric and the F1
score to 0.554 and 0.526. Afterwards, we added the bi-
directional GCN and improved the Challenge Metric and
the F1 score further to 0.582 and 0.564. For above three
benchmarks, typically binary cross-entropy loss is applied
to train the whole network. Finally, we introduced GCN
and class-aware binary cross-entropy loss and achieved fi-
nal Challenge Metric (0.627) and F1 (0.603) score. In the
PhysioNet/Computing in Cardiology Challenge 2020, our
team, Leicester-Fox, reached a challenge validation score
of 0.395, and full test score of -0.012, placing us 34 out of
41 in the official ranking.

Table 1. Challenge Metric and F1 score of incremental
development in our approach.

Methods Challenge Metric F1 score
1DCNN 0.503 0.481
Res-Blocks 0.554 0.526
Res-Blocks + Bi-GRU 0.582 0.564
Res-Blocks+Bi-GRU+GCN 0.627 0.603

5. Conclusion

In this paper, we developed a deep neural network ar-
chitecture for multi-label classification of cardiac abnor-
malities from 12-lead ECGs. The network contains two
modules: the ECG representation network for learning
high-level feature representation of ECG recordings and
the GCN for capturing the inter-class relationships. Em-
pirical evaluations demonstrated the effectiveness and effi-
cacy of our architecture.
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[5] Korürek M, Doğan B. Ecg beat classification using par-
ticle swarm optimization and radial basis function neu-
ral network. Expert systems with Applications 2010;
37(12):7563–7569.

[6] Park K, Cho B, Lee D, Song S, Lee J, Chee Y, Kim IY,
Kim S. Hierarchical support vector machine based heart-
beat classification using higher order statistics and hermite
basis function. In 2008 Computers in Cardiology. IEEE,
2008; 229–232.

[7] Andreao RV, Dorizzi B, Boudy J. Ecg signal analysis
through hidden markov models. IEEE Transactions on
Biomedical engineering 2006;53(8):1541–1549.

[8] Kropf M, Hayn D, Schreier G. Ecg classification based on
time and frequency domain features using random forests.
In 2017 Computing in Cardiology (CinC). IEEE, 2017; 1–4.

[9] Shah AP, Rubin SA. Errors in the computerized electrocar-
diogram interpretation of cardiac rhythm. Journal of elec-
trocardiology 2007;40(5):385–390.

[10] Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn
C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia
detection and classification in ambulatory electrocardio-
grams using a deep neural network. Nature medicine 2019;
25(1):65.

[11] Ribeiro AH, Ribeiro MH, Paixão GM, Oliveira DM, Gomes
PR, Canazart JA, Ferreira MP, Andersson CR, Macfarlane
PW, Wagner Jr M, et al. Automatic diagnosis of the 12-lead
ecg using a deep neural network. Nature communications
2020;11(1):1–9.

[12] Defferrard M, Bresson X, Vandergheynst P. Convolutional
neural networks on graphs with fast localized spectral filter-
ing. In Advances in neural information processing systems.
2016; 3844–3852.

[13] Kipf TN, Welling M. Semi-supervised classification
with graph convolutional networks. arXiv preprint
arXiv160902907 2016;.

[14] Read J, Pfahringer B, Holmes G, Frank E. Classifier
chains for multi-label classification. Machine learning
2011;85(3):333.

Address for correspondence:

Zheheng Jiang
Informatics, University Rd, Leicester, UK LE1 7RH
zj53@leicester.ac.uk

Page 4


