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Abstract 

For the 2020 PhysioNet/Computing in Cardiology 
Challenge, we applied wavelet analysis to develop multiple 
deep learning models, creating a unique model for each 
lead. This approach leverages the ability of different leads, 
based upon their anatomical placement, to better observe 
different arrhythmias. A voting scheme is implemented 
amongst the leads, allowing for confirmation of 
arrhythmia diagnosis from multiple leads, thereby 
increasing confidence in the diagnosis while also allowing 
for diagnosis of multiple concurrent arrhythmias. We 
leverage transfer learning to simplify training our deep 
learning network by utilizing a modified version of 
SqueezeNet for training. Since SqueezeNet is designed for 
image classification, the ECG signals are converted to 
scalograms prior to training. Using this method, our team, 
Eagles, achieved a challenge validation score of 0.214 and 
a full test score of 0.205, placing us 20th out of 41 in the 
official ranking. While this method has shown promise, 
improvements are needed to improve classification 
accuracy in order to make it a clinically viable technique. 

 
 

1. Introduction 

The standard 12-lead electrocardiogram (ECG) is a non-
invasive diagnostic tool for measuring and recording the 
electrical activity of the heart. The ECG is commonly used 
in the diagnosis of cardiac arrhythmias and abnormalities 
[1]; however, the accurate interpretation of the ECG 
requires highly skilled practitioners [2]. Therefore, 
automated diagnostic classification of ECGs can greatly 
assist clinicians, particularly when a shortage of such 
specialized personnel exists. In recent years, there has been 
increased interest in this research topic; however, these 
studies tend to be limited in the number of samples and/or 
diversity of the datasets. The 2020 PhysioNet/Computing 
in Cardiology Challenge, Classification of 12-lead ECGs, 
facilitates the development of robust classification 
algorithms over a large, diverse dataset in order to 
overcome limitations of previous studies [3-7]. Details of 
the 2020 Challenge may be found at [8]. 

2. Methods 

Transfer learning with SqueezeNet requires images for 
training. To accomplish this, we converted the ECG 
signals to scalograms, which are time-frequency 
representations of the absolute value of the continuous 
wavelet transform coefficients plotted over time and 
frequency. Examples of ECG signals (short snippets are 
used for clarity) and their corresponding scalograms are 
shown in Figure 1. 
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Figure 1. Example of ECGs and associated scalograms of 
two different patients: one patient with right bundle branch 
block (RBBB) and another patient with atrial fibrillation. 
 

In order to leverage the ability of different leads, based 
upon their anatomical placement, to better observe 
different arrhythmias, we created twelve separate models, 
one for each lead.  By examining the scalograms generated 
from the 12 lead positions, we can qualitatively observe 
differences that distinguish them from one another, which 
should be able to be exploited through deep learning. An 
example is shown in Figure 2. 
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Figure 2. Scalograms from all 12 leads for a patient with 
left bundle branch block (LBBB). 

2.1. Data Reduction 

We reduced the diagnosis categories in the training set 
to the 27 individual diagnoses that were designated for 
classification as well as combinations of diagnoses that had 
at least 50 instances in the training set. This resulted in 76 
possible diagnoses, and we ignored any data that did not 
contain at least one of these 76 options. The combined 
diagnoses used for training are shown in Table 1. 
 
Table 1. Diagnosis code combinations used for training. 
 
# SNOMED codes # SNOMED codes 
1 39732003,426783006 18 426177001,428750005 
2 164934002,426783006 19 426783006,698252002 
3 164873001,426783006 20 164889003,55930002 
4 426783006,427393009 21 164934002,427084000 
5 426783006,713426002 22 284470004,284470004 
6 164865005,426783006 23 164867002,427084000 
7 426177001,426783006 24 164909002,426783006 
8 164889003,59118001 25 270492004,426177001 
9 164951009,426783006 26 164873001,426177001 
10 427084000,428750005 27 284470004,426783006 
11 426783006,427084000 28 426627000,428750005 
12 426783006,55930002 29 164889003,428750005 
13 164861001,426783006 30 164867002,426627000 
14 164889003,164934002 31 270492004,426783006 
15 164934002,425623009 32 164947007,426783006 
16 111975006,164930006 33 284470004,59118001 
17 164884008,426783006 34 164884008,59118001 
 
35 

 
164865005,164951009,426783006 

36 39732003,426783006,445118002 
37 164861001,164873001,426783006 
38 164934002,39732003,426783006 
39 164909002,39732003,426783006 
40 164865005,39732003,426783006 
41 164865005,164917005,426783006 
42 111975006,164930006,428750005 
43 164861001,164873001,164889003 
44 39732003,426177001,426783006 
45 164873001,164934002,426783006 
46 39732003,426783006,713426002 
47 164865005,164951009,39732003,426783006 
48 164865005,39732003,426783006,445118002 
49 164865005,164951009,39732003,426783006,445118002 

 
By using this set of predefined combinations, we 
intentionally limited the different possible outcomes, 
rather than allowing all possible variations. We selected 
ten of each of these signals for training in order to have a 
balanced dataset that could be processed in a reasonable 
timeframe within our limited processing capabilities. 
 
2.2. SqueezeNet 

SqueezeNet is a small convolutional neural network that 
has been demonstrated to have accuracy similar to AlexNet 
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on ImageNet data with significantly less parameters [9]. It 
further provides several advantages because of its smaller 
size, including reduced communication for distributed 
servers during training, reduced bandwidth for model 
export, and increased variety of possible platforms for 
deployment.  SqueezeNet is available in MATLAB as part 
of the Deep Learning Toolbox; additionally, the R2020a 
version of the Deep Learning Toolbox provides the use of 
SqueezeNet without having to install a support package 
[10].   

The last six layers of the SqueezeNet model in 
MATLAB [11] are shown in Table 2. 

 
Table 2. Final six layers of SqueezeNet. 
 
Layer description Additional details 
Dropout 50% dropout 
Convolution 1000 1x1x512 convolutions with 

stride [1 1] and padding [0 0 0 0] 
ReLU  
Global Avg Pooling  
Softmax  
Classification 
Output 

crossentropyex with ‘tench’ and 
999 other classes 

 
For our Challenge submission in the official phase, we 
modified the layers shown above as follows. We replaced 
the last dropout layer in the network with a dropout layer 
with 60% probability rather than 50% [11]. The 1-by-1 
convolutional layer, which is not a fully connected layer, 
was replaced with a convolutional layer with the number 
of filters set to the number of potential output classes. The 
final layer was replaced with a classification layer without 
class labels. This modified model is shown in Figure 3, and 
training parameters for the model are shown in Table 3. 
    As shown in Table 3, the stochastic gradient descent 
with momentum  (SGDM)  optimizer  was selected as  the  

solver for our model. It is a very commonly used solver in 
machine learning applications that has been shown to yield 
fast convergence [12]. It has been successfully utilized for 
training deep learning networks under both convex and 
non-convex settings for smooth objectives [12,13].  
 
Table 3. Model training parameters [11]. 
 

Parameter  Value 
Solver Stochastic gradient 

descent with momentum 
(SGDM) optimizer  

Initial learning rate 3e-4 
Mini batch size 10 
Max epochs 15 
Validation frequency Total # training samples 

/ Mini batch size 
 

 
2.3. Voting Scheme 

Using the 12 models, one for each lead, a voting 
scheme is implemented for classifying new samples. 
Namely, each model can potentially assign a value of 0.083 
to each diagnosis code. After each of the 12 models have 
made their individual predictions, the scores for each 
diagnosis across all of the leads are summed together. Any 
diagnosis code that has a score greater than 0.3, meaning 
at least four votes, is labeled as one of the diagnoses for 
that sample. If there is no score greater than 0.3, the 
diagnosis or diagnoses with the maximum score are used 
for the classification label. By using a voting scheme, the 
confidence of the resulting classification labels should be 
increased [14]. There are different potential options for 
combining the results of multiple classifiers, but we chose 
the straightforward one described above as a starting point 
for the purposes of the Challenge. 

 
Figure 3. SqueezeNet Layer Graph 
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3. Results 

In the unofficial phase of the Challenge, the best 
performing entry for team Eagles received F_beta score = 
0.310 and G_beta score = 0.170. Validation accuracy 
ranged from 83-98% for the different arrhythmias during 
training. In the official phase of the Challenge, our team 
placed 20th out of 41 teams. Our score on the validation 
set was 0.214, and our score on the full test set was 0.205. 
Details of the test dataset and scoring algorithms used in 
the Challenge can be found in [8]. 

 
4. Discussion and Conclusions 

Benefits of this approach include fast training time both 
from leveraging transfer learning, as well as the small size 
of SqueezeNet. However, while our results show some 
promise, there is noticeably significant room for 
improvement. One of the difficulties encountered during 
the Challenge was that our intended pre-trained model, in 
which we had expended considerable development time, 
was GoogLeNet [15], but due to limitations in the test 
environment, we were unable to obtain results for this 
model. GoogLeNet is similar to SqueezeNet in the sense 
that both are pretrained models used for image 
classification, but GoogLeNet is a deeper convolutional 
neural network capable of more complex classification. 
GoogLeNet has a depth of 22 layers with parameters, 
whereas SqueezeNet has 18. We hope to test out our 
original design using GoogLeNet in the future.  

Another limitation of our work is related to lack of 
sufficient computing resources, which affected the 
sophistication of training we were able to accomplish. In 
particular, using only ten signals per arrhythmia was an 
unfortunate limitation of our available computing power 
and should be increased significantly to potentially 
improve classification accuracy.  
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