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Abstract 

Cardiac rhythm abnormality, as associated with 

irregular heart activity, presents as changes in an 

electrocardiogram (ECG). In this paper, as part of the 

PhysioNet Challenge 2020, we propose two cardiac 

abnormality detection and classification neural models, 

using 12-lead ECG signals. Our ECU team proposes a 

hand-designed Recurrent Convolutional Neural Network 

(RCNN), consisting of 49 one-dimensional convolutional 

layers, 16 skip connections, and one Bi-Directional LSTM 

layer. This model, without relying on any pre-processing 

or manual feature engineering, achieved a Challenge 

validation score of 62.3% and a full test score of 38.2%, 

ranking us 9th out of 41 teams in the official ranking. Our 

second neural model, designed through neural 

architecture search, did not score on the full test dataset 

nor on the validation dataset; however, we optimistically 

expect performance improvement compared to our hand- 

designed RCNN model. This model scored 64.4% using 10-

fold cross-validation on the training dataset, which is 2.5% 

higher than the training score of our RCNN model, using 

10-fold cross-validation. 

 

 

1. Introduction 

Cardiovascular disease was reported to be the leading 

cause of death worldwide in 2012 (accounting for 17.3 

million deaths per year), and has been projected to grow to 

23.6 million deaths by 2030 [1].  According to the 

American Heart Association, cardiovascular disease 

causes 25% of annual deaths in the United States [2]. 

Development of an automatic cardiac abnormal activity 

detection system could assist medical personnel in 

providing timely and accurate diagnosis of cardiovascular 

disease related to rhythm abnormalities. The PhysioNet/ 

Computing in Cardiology (CinC) Challenge 2020, 

provides an opportunity for the machine learning 

community to propose scientific solutions to the problem 

of automatic detection of cardiac abnormalities from 

standard 12-lead ECGs [3].   

In the literature, most successful machine learning 

based cardiac abnormality detection and classification 

methods have utilized manually engineered feature 

extraction schemes [4]. Whilst, these techniques when 

combined with classical classifiers provide promising 

classification performance, they require expert knowledge 

to manually design feature extraction methods. In this 

paper, we study the role of neural architecture design on 

the classification of cardiac abnormalities from ECG 

signals. More specifically, we propose two neural models 

that produce promising results, without requiring feature 

extraction and/or feature engineering. The first model is 

constructed by combination of a hand-designed 

Convolutional Neural Network (CNN) and a Long-Short 

Term Memory (LSTM) model. Although this model has 

provided competitive results on the full Challenge test 

dataset (ranked 9th), the manual design of the network’s 

structure is the result of a time-demanding task that 

requires expert knowledge in deep learning optimization. 

In our second proposed model, we automate the process of 

neural architecture design and construct the architecture of 

this model with minimal reliance on human expert 

knowledge.  

The rest of this paper is organized as follows. In section 

2 we present our proposed neural architectures while in 

section 3 we demonstrate our experimental results. Finally, 

in section 4 we discuss our results and conclusions. 

 

2.  Method 

2.1. Dataset and data preparation 

The dataset used in this study, as provided by the 

PhysioNet Challenge 2020, has 43101 multi-label ECG 

samples containing 111 classes of heartbeat rhythms [3].  

The performance metric defined by Challenge organizers 

uses a subset of 27 of these classes for the scoring of 

competing algorithms, thus samples that belonged to 

unused classes were discarded from our training dataset, 

reducing the total number of training samples to 37619. 

Amongst the 27 classes, 3 pairs of classes were considered 

equivalent for scoring performance, hence we treated each 

pair as the same class, leading the final classification 

problem to be a 24-class, multi-label classification task.  
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The length of ECG samples varies between 6 seconds to 

30 minutes, with a median of 10 seconds. As CNN models 

accept signals with a constant length, waveforms shorter 

than 10 seconds were zero-padded, and signals longer than 

10 seconds were truncated to the last 10 seconds.  

In order to evaluate the performance of our proposed 

models, we have used 10-fold cross validation on the 

training dataset, that is, we have randomly partitioned the 

training dataset into 10 equally sized  subsets, then trained 

our models 10 times using one subset for testing, 8 for 

training as well as one for validation (for determination of 

early stopping), and reported mean of 10 held-out folds of 

the training data.  

In order to reduce the size of input to our NAS-based 

model without losing meaningful information, and 

consequently reducing the amount of required computing 

resources such as memory, the input time domain signal 

was transformed into wavelet presentation. This was 

completed by using Db1 mother wavelet with one level of 

decomposing, providing a set of details and approximation 

coefficients. In the corresponding experiments, 

approximation coefficients were used as the input to our 

model while details were discarded. Our main intention for 

using wavelet transformation was to reduce the required 

computing resources; however, Christov et al. [5] showed 

that wavelet transforms are one of the most suitable 

methods  for ECG analysis. Accordingly, we expect 

performance improvement. 

 

2.2. Our proposed RCNN architecture 

Recurrent Neural Networks (RNNs) which model the 

temporal dependencies of data, have proved to perform 

well for time series classification [6]. The heart’s electrical 

conduction system follows a periodic process; thus, such 

temporal dependencies naturally exist in ECG signals [7]. 

In this paper, we have experimentally shown that our 

proposed RCNN model, constructed by combination of a 

proper CNN model, that effectively extract features from 

ECG waveforms, and a Long-Short Term Memory 

(LSTM) model, that models the dependencies in ECG 

waveforms, can provide comparable results to methods 

utilizing extensive manual feature engineering. Our 

proposed architecture is illustrated in Figure 1. Inspired by 

architecture proposed in [8], the CNN section of our 

proposed architecture is constructed of 16 blocks with 

three 1-Dimensional convolution layers within each block. 

All convolutions are followed by a Batch Normalization 

(BN) layer, a Rectifier Linear Unit (ReLU) activation 

function, and a dropout layer. All blocks have been 

connected  to their previous block by a skip connection, 

similar to that of Residual Networks (ResNet) [9]. These 

skip connections concatenate features at the end of the last 

two blocks, allowing information to propagate through the 

deep CNN structure, thus reducing the effect of vanishing 

gradient descent. Prior to our first block, the 12-lead ECG 

 

inputs were passed through a stem convolution layer with  

32 filters, expanding the total number of convolution layers 

in our model to 49. The number of output channels has 

been doubled at the end of the 4th, 8th, and 12th blocks, 

leading to a total of 256 output channels at the last 

convolution layer. The length of all convolution filters is 

set to 24. Within each block, the first 2 convolution layers 

have a stride of 1, and the last layer’s stride is 2, leading 

the size of input signal to be divided by 2 by the end of 

each block. At each skip connection, a max-pooling layer 

with a stride of 2 was applied to make the output size of 

the previous block consistent with output size of current 

block (to allow concatenation). The output of the last 

convolution layer is then passed through a BiLSTM layer. 

The number of hidden units of the BiLSTM layer is 

empirically adjusted to 300 where the evaluation metric 

was most promising. The last layer of the network is a 

sigmoid layer with 24 nodes (corresponds to 24 output 

classes) which predicts a value between 0 and 1 for each 

class in our multi-label classification problem, indicating 

if a sample belongs to a class. The threshold in a binary 

classification problem is usually 0.5; however, as studied 

in [10], if the classification problem is imbalanced this 

threshold can vary. In this paper, by applying moving 

decision threshold [11], we selected 0.2 as the 

classification threshold for testing our proposed model.    

 

2.3. Our NAS-based architecture 

In recent years, Neural Architecture Search (NAS) 

methods have been proposed to assist the machine learning 

community to automatically design suitable architectures 

yielding higher performance for a given problem. 

However, to date, there are very few studies that have 

applied a NAS method to design a CNN model for 

biomedical signal classification. In a previous study [12], 

we explored the performance of a well-known NAS 

method, Efficient Neural Architecture Search (ENAS) 

[13], on Atrial Fibrillation (AF) detection, confirming that 

NAS-Based methods can provide competitive results 

compared to state of the art methods for biomedical signal 

classification tasks.  

In this paper, we proposed an automatically designed 

CNN architecture by employing Differentiable 

Architecture Search (DARTS) method  [14], modifying its 

search space to tailor it to 1-Dimensional ECG waveforms. 

Figure 1.Our proposed RCNN model 
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This approach consists of two phases. In first phase, the 

search algorithm looks for the best possible set of 

operations within the search space and builds up the best 

possible architecture. In the second phase, the discovered 

architecture is trained from scratch to provide the final 

neural model. Our search space consists of: a) 1-

dimentional convolutions (with possible filter lengths: 

3,5,7,9,11), b) dilated convolution (filter length 3,5), c) 

max-pooling (size of 3), d) average-pooling (size of 3), and 

e) skip connections. Convolution operations have a ReLU-

Conv-BN order. The DARTS search method considers 

each of these blocks as building units of a CNN 

architecture and optimizes possible operations within the 

block, whilst forming the final architecture by stacking 

these blocks.  

In the search algorithm, the total number of blocks were 

set to 8 where block numbers 3 and 6 are reduction blocks. 

In reduction blocks the number of convolution channels 

are doubled while input signal length is reduced by a factor 

of two. Each of our proposed blocks has two input nodes 

(outputs from two previous blocks or input data in the case 

of first two blocks), two middle nodes, and one output node 

that concatenates the outputs of the middle nodes. Each 

middle node can be connected to any two previous nodes. 

Similar to our RCNN model, the last layer is a sigmoid 

layer with 24 nodes. 

The search algorithm in DARTS uses a bi-level 

optimization strategy, as formulated in Equation 1. In this 

equation, W, the weights of the network, are optimized by 

minimizing training loss, while α, the selected 

architectures, are optimized by minimizing validation loss. 

Each epoch of the search algorithm samples a neural 

architecture and evaluates its performance by computing 

its validation loss. This algorithm moves towards an 

optimized architecture by minimizing validation loss. We 

have chosen the architecture with minimum validation loss 

as the final architecture and trained it from scratch. The 

discovered normal and reduction blocks are illustrated in 

Figures 2. 

 

2.4. Experimental setup 

The parameters of the Our RCNN model are initialized 

with the ‘He’ initializer. An Adam optimizer was used to 

train the model parameters. The learning rate was 

initialized at 10-3 and a “ReduceLROnPlateau” learning 

scheduler with a decay rate of 0.1 and a patience of 3 was 

used. The minimum learning rate was set to 10-6. The 

algorithm was trained for 50 epochs, and early stopping 

with patience of 15 was set. On average, each training 

epoch of the algorithm took about 300s, leading to a 

maximum training time of 250 minutes on a single Nvidia 

Geforce GTX 1080 Ti GPU. 

The parameters of our NAS-based network were trained 

using an SGD optimizer with momentum of 0.9. The 

learning rate was initiated at 0.025, and a “cosine  

 
Figure 2. a) Our discovered normal block. b) our discovered 

reduction block. 

annealing” learning rate scheduler with a minimum 

learning rate of 10-3 was used. The search algorithm was 

run for 50 epochs and the architecture with minimum 

validation loss was chosen for training from scratch. Each 

epoch of search algorithm took about 50 minutes on a 

single Nvidia Quadro RTX 8000 GPU. The training from 

scratch was run for 200 epochs using early stopping with a 

patience of 20. The train algorithm run time was reported 

20 hours on the same Quadro GPU machine.  
* )min ( ( ),

val
WL

   

* ) arg min ). ( ( ,TrW ains t W L W =  

Equation 1. 

 

3.1. Results - RCNN model 

We trained our proposed Conv-BiLSTM model using 

time domain ECG signal. The derived model was 

evaluated using 10-fold cross validation on training 

dataset, where it received a score of 61.9%. This model 

was submitted to the Challenge and received the validation 

score of 62.3% and full test score of 38.2%, placing our 

ECU team 9th in the official ranking.  To study the effect 

of the LSTM model and compare it with the base CNN 

model, we trained and evaluated the CNN model with the 

same setting, except removing the BiLSTM section and 

decreasing our initial learning rate to 5×10-4 for the CNN 

model as with our default learning rate the network did not 

converge. The evaluation score on training dataset using 

10-fold cross validation was 59.2% which shows the 

importance of BiLSTM model.  

In order to study the effect of wavelet transformation, 

we have computed the wavelet coefficients, fed them as 

input to our Conv-BiLSTM model, and evaluated the 

results. Our proposed network performance is 62.9% using 

10-fold cross validation on training dataset. Whilst this 

model has not received a score on validation dataset, we 

estimate some improvements over our scored model. 

 

3.2. Results - NAS-based model  

In these experiments, wavelet transformations of ECG 

waveforms were fed as input to the search algorithm. We 

performed the search algorithm on our designed search 

space. We chose the normal and reduction blocks (shown 

in Figure 2.) sampled at the last epoch of the algorithm 

where the validation loss is minimum and trained the 

architecture constructed by stack of those blocks (20 

blocks where block numbers 7 and 14 are reduction). The 
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performance of our model was reported as 64.4% using 10-

fold cross validation on training dataset. Whist this model 

failed to receive a score on the validation dataset and the 

full test dataset, we expect a roughly 2-3% improvement 

compared to our hand-designed model, which might have 

led us to a higher place in the Challenge’s official ranking. 

Table 1 summarizes all our proposed models together with 

their score on training dataset using 10-fold cross 

validation, Challenge’s validation dataset, and full test 

dataset.  
Table 1. Summary of our proposed models’ score 

 

4. Discussion and conclusion 

Early detection of cardiac rhythm abnormalities can 

improve the quality of treatments that patients receive. In 

this study, we have proposed two neural models which can 

be used for early diagnosis of 24 classes of cardiac 

abnormalities without relying on manual feature 

engineering methods. Our experiments show that proper 

neural architecture design has a significant impact on 

model classification performance. By incorporating long-

term and short-term memory, BiLSTM networks can learn 

temporal features and dependencies more accurately than 

a hand-designed CNN, leading to higher performance. The 

forget gate in the LSTM models allow the model to discard 

parts of ECG waveforms that don’t contribute towards 

classification. Long-term memory facilitates the learning 

process by remembering discriminative features from all 

parts of the waveform. Our Conv-BiLSTM model reported 

a score of 61.9% on training dataset using 10-fold cross 

validation, which is 2.7% higher than our hand-designed 

CNN model on the same set. The Conv-BiLSTM model 

received 62.3% score on validation dataset and 38.2% on 

full test dataset, placed our team 9th in official ranking.   

Pre-processing techniques such as wavelet 

decomposition can boost classification performance. We 

would expect it to marginally improve our score on the 

validation and full test datasets. With this technique, our 

experiments suggest a 1% higher classification score on 

training dataset using 10-fold cross validation, reaching 

62.9%. Our experiments indicate that the most significant 

performance boost can be derived by using a NAS method 

to search over a subset of standard operations in CNNs, and 

automatically design the best possible CNN model. Our 

NAS-based neural model reported a score of 64.4% using 

10-fold cross validation on training dataset. This model did 

not receive a score on validation and full test datasets; 

however, we expected around a 3% improvement 

compared to our current score in official ranking. We 

acknowledge that this conclusion might be optimistic.  

In future work, it will be desirable to combine LSTM 

networks and automatically designed CNN architectures, 

which might provide more promising classification results. 

Moreover, the search space of our NAS algorithm can be 

further modified, where the effects of different search 

space designs on model performance can be further 

explored. 
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Model Wavelet 

decomp. 

10-fold cross 

validation 

(training dataset)  

Validation 

set score 

Full test 

dataset 

Hand-designed 
CNN 

No 59.2% ------ ------ 

Hand-designed 

Conv-BilSTM 

No 61.9% 62.3% 38.2% 

Hand-designed 
Conv-BiLSTM 

Yes 62.9% ------ ------ 

NAS-based CNN Yes 64.4% ------ ------ 
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