ECG Classification With a Convolutional Recurrent Neural Network

Halla Sigurthorsdottir', Jérome Van Zaen!, Ricard Delgado-Gonzalo', Mathieu Lemay'

ISwiss Center for Electronics and Microtechnology (CSEM), Neuchétel, Switzerland

Abstract

We developed a convolutional recurrent neural network
to classify 12-lead ECG signals for the challenge of Phy-
sioNet/Computing in Cardiology 2020 as team Pink Irish
Hat. The model combines convolutional and recurrent lay-
ers, takes sliding windows of ECG signals as input and
vields the probability of each class as output. The convo-
lutional part extracts features from each sliding window.
The bi-directional gated recurrent unit (GRU) layer and
an attention layer aggregate these features from all win-
dows into a single feature vector. Finally, a dense layer
outputs class probabilities. The final decision is made us-
ing test time augmentation (TTA) and an optimized deci-
sion threshold. Several hyperparameters of our architec-
ture were optimized, the most important of which turned
out to be the choice of optimizer and the number of filters
per convolutional layer. Our network achieved a challenge
score of 0.511 on the hidden validation set and 0.167 on
the full hidden test set, ranking us 24th out of 41 in the
official ranking.

1. Introduction

Cardiovascular diseases are both grave and prevalent
and are the global leading cause of death [I]. To help
reduce the death rate of different types of cardiovascu-
lar diseases readily available, fast and accurate screen-
ing and early diagnosis is key. The goal of the Phys-
ioNet/Computing in Cardiology Challenge 2020 is to de-
velop open-source algorithmic approaches for detecting
abnormalities from 12-lead ECG recordings [2l3]].

Our team, Pink Irish Hat, employed a similar neural
network architecture to [4]], which combines convolutional
and recurrent layers, taking sliding windows of ECG sig-
nals as input and yielding the probability of each class as
output. To get a final decision, we used test time augmen-
tation (TTA) as well as an optimized threshold on the prob-
abilities. We optimized several hyperparameters of the net-
work and the training process as well as testing several
methods to alleviate the class imbalance in the training set.

Computing in Cardiology 2020; Vol 47

2. Methods

This section includes label strategy, data pre-processing,
network architecture, and hyperparameter optimization.

2.1. Label Strategy

Since only 27 out of the 111 diagnoses found in the
dataset were scored in the challenge, we grouped all non-
scored diagnoses into one “negative” class. Furthermore,
three pairs of diagnoses were considered as equivalent in
the challenge. We mapped all recordings labelled SVPB or
VPB to PAC or PVC respectively, since their ECG patterns
are similar enough not to confuse the network during train-
ing. However, since the QRS duration is different between
CRBB and RBBB by definition, we did not combine these
two diagnoses into one class.

2.2. Pre-processing and Augmentation

We excluded leads with redundant information, namely
leads III, aVR, aVL and aVF. Since the dataset includes
recordings sampled at 257 Hz, 500 Hz and 1000 Hz, we re-
sampled the data to the lowest of the three, 257 Hz. Since
some of the very long recordings (30 minutes) have a sig-
nificant drift, we applied a high pass filter with a cutoff at
0.5 Hz to all signals. We then split the data into training
(80%) and validation (20%) [hereafter referred to as “local
validation”] sets stratified by dataset and the least common
label found in each recording. Finally, each lead was nor-
malized by the standard deviation over the training data.
To augment the data and increase model generalization ca-
pabilities, a random offset was sampled for the beginning
of the first window every time an ECG recording was pre-
sented to the network.

2.3. Network Architecture and Training

We selected a network architecture combining convo-
lutional and recurrent blocks (see Figure|[I). The convolu-
tional block was used to extract features while the recurrent
block was used to handle signals of varying length. The
convolutional block has 15 convolutional layers that are

Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.198

Convolutional block

Recurrent block

{ Mini-block

‘ I Skip connections

16 16 16
11 2

|
I
128
5 70%
—

I |

1D Convolution

Attention With Context
Batch Normalization
Fully Connected Layer

Figure 1. The network architecture. The different layers are distinguished by color/shape/pattern as detailed in the legend.
The network has a convolutional and a recurrent block. The convolutional block is made up of five smaller “mini-
blocks”. Each mini-block has three convolutional layers, each with a rectified linear unit (ReLU) activation. Printed on
each convolutional layer is the filter size. Below each layer, there are the number of filters (upper) and stride (lower). Each
mini-block is concluded with a dropout layer. In the first mini-block, the dropout layer is replaced by a SpatialDropout
layer (denoted with an s). The dropout rate is printed on the layer. The gray arrows on each mini-block represent skip
connections. Only the first and last mini-blocks are depicted in the figure. The other three are depicted as pink dots. The
middle mini-blocks are the same as the last block with the exception that the kernel size of the last convolutional layer is
the same as the first mini-block. Furthermore, the number of filters per convolutional layer are different. The number of
filters of each mini-block (constant throughout the block) are printed below each pink dot. The recurrent block is made
up of a gated recurrent unit (GRU) with both input and recurrent dropout, a ReLU activation and a dropout of the output,
and an attention layer with context. The number of hidden units is printed on the GRU layer. The final layers are the
batch normalization, ReLLU activation, dropout, and a fully connected layer with a sigmoid activation which returns the
non-exclusive class probabilities. Underlined values were considered as hyperparameters, their optimized values are found

in the figure. More details on their optimization are found in Section [2.5]and Section[3.2]

split into five mini-blocks. Each mini-block has three con-
volutional layers, each with a rectified linear unit (ReLU)
activation function. The first two convolutions in the mini-
block have a kernel size of 3 and stride 1, while the last
has a kernel size of 24 and stride 2, excluding the very
last convolution layer, which has a kernel size of 48. A
dropout layer with a dropout rate of 10% is added after
each mini-block. In addition, each mini-block has skip
connections. In all mini-blocks except the first, the skip
connection is from the very beginning of the block, until
before the last convolutional layer in the block. The first
block is slightly different with the skip connections starting
after the first convolution, but before the activation. This
is to ensure that the input and output of the skip connec-
tion have the same dimensions. The convolutional block
is concluded with a global average pooling layer which
produces a feature vector for each window. These feature

vectors are then fed into the recurrent block, composed of
a bi-directional gated recurrent unit (GRU), with dropout
for both the inputs and the recurrent state, followed by a
ReLU activation, a dropout on the outputs and conclud-
ing with an attention layer with context [5]. The recur-
rent block produces one feature vector for the whole signal
that is normalized over the batch and finally a fully con-
nected layer with a sigmoid activation function produces
the non-exclusive class probabilities. The final model was
trained for 350 epochs, with a batch size of 8 recordings
and the loss function was binary cross-entropy. Record-
ings with similar durations were grouped together to limit
zero padding. The biggest batch size that did not exceed
the hardware limitations during training was 8. The epoch
with the highest local validation score was selected as the
final model. The choice of optimizer was considered as
a hyperparameter (see Section 2.5 and Section 3.2). The

Page 2

model was implemented in TensorFlow 2.2.0.

2.4. Test Time Augmentation

To boost the performance of the model and to ensure that
the offset of the input signal does not play a decisive role in
the decision, we applied test time augmentation (TTA). To
perform TTA, we applied ten different offsets to the input
signal. A prediction was then made on each of these ECG
signals. The mean of the resulting prediction probabilities
was then thresholded to get the final decision.

2.5. Hyperparameter Optimization

Several hyperparameters of the network were optimized.
To increase efficiency, the data was downsampled to
100 Hz and recordings longer than 200 s were excluded
during hyperparameter optimization. Where possible, the
model with the highest local validation score was selected.

Optimizer: The first step was to find a suitable op-
timizer to minimize the binary cross-entropy loss. The
tested optimizers were: Stochastic Gradient Descent
(SGD), Adam [6], AMSGrad [7]], and Nesterov Adam
(Nadam) [8]]. The optimizers were executed for 150 epochs
with their default parameters in TensorFlow 2.2.0 on the
full dataset resampled at 500 Hz optimizing the network
from [4] with an added global average pooling layer at the
end of the convolutional block.

Number of Filters: The number of filters in [4] was
constant for all layers (12 filters per layer). We performed
a grid search of this hyperparameter with the values of 12,
16, 32, 64, 128, and 256. Since models with 64 or more fil-
ters per layer exceeded the hardware limitations set by the
challenge, a model with 16 filters in the first mini-block,
32 filters in the next two and 64 in the last two, which did
not exceed the hardware limitations, was also tested.

Dropout: Two different dropout rates were used: one
for the convolutional block (d.) and one for the recurrent
block (d,). A grid search was run over these parameters.
The range of the convolutional dropout was d. € [0,0.2]
with a 0.1 increment. The tested dense/recurrent dropout
rates were d.. € {0.2,0.5,0.7}.

Decision Threshold: Decision threshold optimization
was performed after training by simply taking the predic-
tion probabilities of the model on the local validation set
and compute the challenge metric with different thresholds
ranging from O to 1 with 0.1 increment.

Other hyperparameters tested either did not have an ef-
fect on the overall score (halving the kernel sizes to ac-
count for lower sampling rate, increasing number of mini-
blocks by one), a negative effect (changing which layers
within each mini-block would be followed by a dropout),
or exceeded hardware limitations (e.g., additional GRU

layer, doubling GRU number of hidden units). More-
over, additional methods to alleviate class imbalance were
tested: focal loss [9], oversampling, MLSMOTE [10], and
an ensemble of binary and multi-label deep models. How-
ever, none of them successfully balanced the label distri-
bution nor resulted in a higher local nor hidden validation
score.

3. Results

In this section, we show the results of the hyperparame-
ter optimization as well as the final hidden validation and
testing scores.

3.1. Hyperparameter Optimization

Optimizer: The training score over each epoch of each
optimizer can be seen in Figure[2] Nadam with the default
parameters showed the most promise, but it was unstable.
Therefore, we reduced its learning rate to 10~%. The local
validation score showed a similar progression over epochs.

0.3

3 0.2 SGD
3 01 Adam
% 0.0 —— Nadam
% 0.1 —— AMSGrad
_Lg) —02 Nadam
O -03 T =10t

—04 AN

0 20 40 60 80 100 120

Epoch (a.u.)

Figure 2. The training scores over epochs obtained using
different optimizers to optimize the model from [4] with
an additional global average pooling layer.

Number of Filters: Training and local validation scores
are depicted in Figure[3] For a fair comparison, the scores
are shown from the same epoch of all models. With more
filters, the local validation performance goes up until it
plateaus at 128 filters while the training performance goes
up, a clear sign of overfitting. The models whose scores are
underlined exceeded the hardware limitations. Note also
that the local validation performance of the model with in-
creasing number of filters with depth has a higher local
validation score but lower training score than the equiva-
lent model with constant number of filters, a sign of a more
generalizable model.

Dropout: The local validation scores obtained were in
the range [0.38,0.47]. The combination of dropout rates
with the highest local validation score of was d. = 0.1 and
d, = 0.7. All scores mentioned are from the same epoch.

Decision Threshold: The best threshold for the model
with the hyperparameters described in Section[2.3] was 0.3
and yielded a local validation score of 0.573, a 0.027 im-
provement from the model with the default threshold (0.5).

Page 3

m Training ™ Local Validation

0,68
0,57
0,48 0,47

‘ 0,42

0,37 ‘

0,32 0,30 ‘ ‘
Iov24 0,22 ‘ ‘

12 16 32 64

Increasing
Number of Filters

CinC Score

0.84
0.74
|Lﬂ 0.47

128 256
Figure 3. The challenge score as a function of number of
filters per layer. The model marked “increasing to 64" has
16 layers in the first mini-block, 32 in the next two, and 64

in the last two mini-blocks. Models with underlined scores
exceeded the hardware limitations of the challenge.

to 64

Finally, applying TTA resulted in an increase in the
range of [0.0002, 0.02] depending on the model. The net-
work was tested with and without skip connections, adding
the skip connections resulted in an 0.1 increase in score.

3.2. Final Results

The model with optimized hyperparameters yielded a
score of 0.451 on the training set and 0.522 on the lo-
cal validation set which increased to 0.546 with addition
of TTA and up to 0.573 with the optimized threshold as
well. The model with optimized hyperparameters and TTA
was submitted with a threshold of 0.5 and with the opti-
mized threshold of 0.3. The obtained hidden validation
scores were 0.313 and 0.511 respectively. The model with
a threshold of 0.3 was selected for testing on the final hid-
den test set resulting in a final test score of 0.167.

4. Discussion and Conclusions

Several models based on the convolutional-recurrent ar-
chitecture were tested in an effort to obtain a model with
good predictive capabilities with some rather good results.
Moreover, several methods were investigated to cope with
the class imbalance problem, but none of them improved
model performance. Hardware limitations set by the chal-
lenge were an additional constraint for our deep neural net-
work model working on long recordings, with the mod-
els that performed best on the local validation set exceed-
ing these hardware limitations. Our best submitted model
that respected the hardware limitations of the challenge
achieved a score of 0.511 on the hidden validation set with
threshold optimization and test time augmentation (TTA).
Notice that the difference between the test score of the
model with a decision threshold of 0.3 and 0.5 is approxi-
mately 0.2, which is very big. This was not expected, since

the increase in local validation score when the threshold
was optimized was an order of magnitude lower.

We observed that model generalization, class imbalance
and the weak labelling of long recordings were the most
important roadblocks to increase the performance of the
overall system. Furthermore, we considered the challenge
data to be uniformly labeled, but since the data comes from
different sources, this assumption might not hold, leading
to wrongly labeled signals. Advances in these areas will
eventually lead to clinical decision support systems and
monitoring devices with doctor-like accuracy.

References

[1] Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and
Stroke Statistics — 2019 Update: a Report From the Ameri-
can Heart Association. Circulation 2019;139:e56-e528.

[2] Goldberger AL, Amaral LA, Glass L, et al. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Re-
search Resource for Complex Physiologic Signals. Circu-
lation 2000;101(23):e215-e220.

[3] Perez Alday EA, Gu A, Shah A, et al. Classification of 12-
lead ECGs: the PhysioNet/Computing in Cardiology Chal-
lenge 2020. Physiol Meas 2020;(In Press).

[4] Chen TM, Huang CH, Shih ES, Hu YF, Hwang MJ. De-
tection and Classification of Cardiac Arrhythmias by a
Challenge-Best Deep Learning Neural Network Model.
Iscience 2020;23(3):100886.

[5] YangZ, Yang D, Dyer C, et al. Hierarchical Attention Net-
works for Document Classification. In Proceedings of the
2016 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies. 2016; 1480-1489.

[6] Kingma DP, Ba J. Adam: A Method for Stochas-
tic Optimization. arXiv preprint arXiv14126980 2017;
https://arxiv.org/abs/1412.6980.

[71 Reddi SJ, Kale S, Kumar S. On the Convergence of Adam
and Beyond. In Proceedings of the International Conference
on Learning Representations (ICLR). 2018; 1-23.

[8] Dozat T. Incorporating Nesterov Momentum into Adam.
Proceedings of 4th International Conference on Learning
Representations 2016;Workshop Track.

[91 Lin TY, Goyal P, Girshick R, et al. Focal Loss for Dense
Object Detection. In Proceedings of the IEEE international
conference on computer vision. 2017; 2980-2988.

[10] Charte F, Rivera AJ, del Jesus MJ, Herrera F. MLSMOTE:
Approaching Imbalanced Multilabel Learning Through
Synthetic Instance Generation. Knowledge Based Systems
2015;89:385-397.

Address for correspondence:

Halla Sigurthorsdottir
Rue Jaquet-Droz 1, Neuchatel, NE, Switzerland
halla.sigurthorsdottir @csem.ch

Page 4

	Introduction
	Methods
	Label Strategy
	Pre-processing and Augmentation
	Network Architecture and Training
	Test Time Augmentation
	Hyperparameter Optimization

	Results
	Hyperparameter Optimization
	Final Results

	Discussion and Conclusions

