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Abstract 

The morphological ECG features for arrhythmia 

diagnosis are usually identified and combined on different 

scales. For example, morphological ECG features can be 

identified on the scale of length or amplitude of QRS waves. 

Professionals can then make a diagnosis based on the 

combination of these identified features. Attention-based 

deep neural networks have been proved to boost 

meaningful features on different scales and suppress weak 

features. To boost and combine ECG features on different 

scales for arrhythmia classification, we proposed MADNN: 

a multi-scale attention deep neural network for arrhythmia 

classification. Our proposed network was designed 

combining kernel-wise and branch-wise attention modules 

based on a backbone of 1-dimensional convolutional 

neural networks. MADNN with properly tuned hyper-

parameters was tested for arrhythmia classification in the 

PhysioNet/Computing in Cardiology Challenge 2020. In 

this challenge, MADNN officially achieved a validation 

score of 0.446, and a full test set score of 0.236. Our team 

named Minibus ranked the 18th out of 41 teams. 

 

1. Introduction 

For the diagnosis of arrhythmia, professionals often pay 

more attention to relative segments of an 

electrocardiogram (ECG) signal and pay less attention to 

the others [1]. In deep learning, attention-based deep neural 

networks (DNNs) have been introduced to imitate a similar 

process [2].  

Attention-based DNNs are capable of learning from 

global information and identifying features to be focused 

on. Essential features are assigned more weights in training, 

and useless information is suppressed [3]. 

Many attention-based DNNs have been validated with 

good performances, such as point-wise spatial attention 

network [4] and squeeze & excitation module (SENet) [5]. 

They were designed to apply the attention-based modules 

to features on a single-scale (respectively in spatial-wise 

and kernel-wise).  

State-of-the-art combined-attention DNNs, such as 

selective kernel network (SKNet) [6], convolutional block 

attention module (CBAM) [7] and split-attention networks 

(ResNeSt) [8], explored the potential of combining 

attention modules on different scales. These networks 

performed better than the reported individual single-scale 

attention networks. 

Combined-attention modules bring extra model 

complexity and increase the need for computational ability 

in model inference. The residual modules in Aggregated 

Residual Transformations for Deep Neural Networks 

(ResNeXt) [9] was designed to reduce the computational 

ability and simplify hyper-parameter tuning. ResNeXt was 

proved to be a robust backbone network in SKNet. 

Although applying a ResNeXt backbone simplify the 

network complexity, the kernel-wise attention modules in 

SENet were simplified in the ResNeXt-based SKNet. 

Unlike SENet, each branch of kernels in a SKNet attention 

module was assigned to the same attention weight. 

Another multi-scale attention network, ResNeSt, was 

recently proved with better performance than SKNet in 

image classification. In ResNeSt, the outputs of several 

attentive modules were concatenated in kernel-wise. 

Attention weights for each kernel were permutated across 

different attentive modules, and this added more diversity 

to the overall attention weights. 

Compared with SKNet, it is difficult to design the 

architecture of ResNeSt and tune the hyper-parameters, 

especially for a task that is different from image 

classification (such as ECG signals classification). This 

aroused our attention to design a novel DNN that each type 

of attention module can be optimized separately with 

diverse attention weights to the outputs of different 

convolutional kernels. 

Thus, we proposed MADNN: a network sequentially 

combines kernel-wise attention modules in SENet and 

kernel-selective modules in SKNet. Also, we modified and 

tested the proposed model on the task of ECG signal 

classification. 

 

2. Methods 

2.1. Data retrieval 

43134 samples were obtained from the PhysioNet 
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Challenge 2020 [10] [11]. Each sample contained one ECG 

signal and one or more corresponding diagnoses. All ECGs 

were recorded at the sample rates of 500 Hz or 1000 Hz. 

The length of each ECG signal varied from 10 seconds to 

30 minutes.  

Each ECG record contained one or more diagnoses, 

including normality and 111 types of abnormalities. 27 

types of diagnoses were labeled in our study because they 

were scored in the PhysioNet Challenge 2020. 

 

2.2. Data preprocessing 

The fully-connected layers in our DNN required a fixed-

size input. The input signals were resampled to a fixed 

sample rate at 500 Hz and padded to a fixed length of 

30000 sample points.  

First, fast Fourier transform was applied to resample all 

signals to 500hz. All signals were then padded to 60 

seconds. The signals which was shorter than 60 seconds 

were copied end to end to the length of 60 seconds. On the 

contrary, the signals longer than 60 seconds were truncated 

to the length of 60 seconds from the end. 

All samples were then randomly shuffled and split into 

a training set, a validation set, and a testing set 

(respectively 80%, 10%, and 10% of the total). 

 

2.3. Data augmentation 

To increase the randomness and reduce overfitting, we 

randomly cropped each padded signal (Figure 1) after 

signal padding. In detail, 60 sample points were reserved 

at the beginning of a signal as the starting interval, and the 

last 60 sample points of the signal were reserved as the 

ending interval for random cropping. 

 
Figure 1. The process of random cropping. 

 

When preparing each batch of inputs, a uniformly 

distributed random variable was generated ranged from 0 

to 60. We cropped the random variable of sample points 

from the beginning of the starting interval. Similarly, 60 

minus the random variable of sample points were cropped 

from the end of the ending interval.  

To avoid the imbalance contribution of different labeled 

classes (imbalance update of weights in DNN neurons), 

focal loss [12] was adopted as our loss function in the 

process of model training. 

Also, a balance factor for each label group was 

calculated according to Formula 1 (Wi denoted the 

extraction weight of class I; μ denoted the number of 

samples in total; μi denoted the mean number of samples 

labeled as class i). Before feeding a sample to our model, 

a random float ranged from 0 to 1 was generated. If the 

generated float was smaller than the corresponding balance 

Figure 2. Comparison of SE Module (a), SK module (b), and our proposed multi-scale attention module (c). FC 

denoted a full-connected layer. 
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factor, the sample would be skipped for training. 

 

   𝑊𝑖 =
2𝜇𝑖

𝜇
  (Formula 1) 

 

2.4. DNN architecture 

A customized multi-scale attention module was 

proposed in our study to combine features on different 

scales. A kernel-wise attention module (Figure 2-a) from 

SE modules and a branch-wise attention module (Figure 2-

b) from SKNet were combined and modified into a multi-

scale attention module (Figure 2-c). In each multi-scale 

attention module, a kernel-wise attention module was 

attached to the end of a branch-wise attention module. 

For the purpose of extracting features from 1-

dimensional signals, the original 2-dimensional CNNs in 

SENet and SKNet were modified to 1-dimensional CNNs 

correspondingly. Inspired by ResNeXt, each branch of 

convolutional layers in the proposed multi-scale attention 

module shared the same kernel size. The kernel size was 

changed to 3 from 7 in the stem convolutional layers in 

comparison to ResNeXt. Applying convolutional layers 

with large kernel size will supress the features of high-

frequency in ECG signals. 

Overall, MADNN consisted of a stem module in 

ResNeXt, four modified multi-scale attention modules 

attached one by another, a global averaged pooling layer, 

and a fully-connected output layer (Figure 3). 

 

 
Figure 3. The overall architecture of MADNN. 

 

2.5. Training Methodology 

Model weights were updated based on the binary cross-

entropy loss for each label. The model was trained with an 

Adam [13] optimizer of an initial learning rate of 0.0001, 

beta1 of 0.9, beta2 of 0.999, and epsilon of 1e-08. The 

learning rate was automatically multiplied with a reduction 

factor of 0.5 when the validation loss has stopped 

improving for 5 epochs. 

A dropout layer with a 0.1 dropout rate was attached to 

each multi-scale attention module to avoid overfitting. 

When training each batch of data, 10% of the weights in its 

previous convolutional layer were randomly selected not 

to be updated. The dropout rate in our study was set to a 

smaller value compared with the dropout rate of 0.2 in 

ResNeSt. This is mainly because a moderate strategy was 

preferred for medical image classification. 

The training was stopped after the validation loss 

stopped optimizing for 20 epochs. An optimal model was 

carefully selected from models in the 20 epochs based on 

the validation result. 

 

2.6. Ensemble learning 

We also implemented an Xgboost [14] classifier to 

aggregating the predictions from an ensemble of the 

optimized MADNN, an Xception model [15], and a 

customized VGG-liked model [16] (Figure 4). All 

individual models were trained on the same challenge data. 

 

 
Figure 4. The workflow of ensemble learning. 

 

In specific, the Xgboost classifier was designed under a 

random search [17] of several hyper-parameters: the 
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number of estimators ranged from 80 to 200 in 4 trails; the 

learning rate ranged from 0.001 to 2 in 20 trails; the 

subsample ranged from 0.6 to 0.9 in 20 trails; the feature 

sample rate by column ranged from 0.5 to 0.98 in 10 trails; 

 

3. Results and discussion 

MADNN without ensemble learning was tested on the 

hidden datasets in the PhysioNet/Computing in Cardiology 

Challenge 2020. Scores were calculated according to a new 

scoring metric that awards partial credit to misdiagnoses as 

cardiologists [10]. The MADNN officially achieved a 

validation score of 0.446. It was also tested on a full hidden 

test set and officially achieved a score of 0.236. Our 

official score ranked 18th out of the scores of 41 teams in 

this challenge (our team named Minibus in the challenge).  

The ensemble classifier was tested on the local testing 

set, which is split by cross-validation. The training score 

was 0.6 higher than the score of independent MADNN. 

The ensemble classifier was not submitted and tested on 

the hidden testing set because its inference speed was 

relatively low.  

In this study, we addressed the potential of a simple 

solution to combining attention modules on different scales. 

The model performed good in the challenge, but more tests 

could be implemented in future works to compare the 

performance of MADNN with other similar DNNs. 

Also, label smoothing and stacking ensemble are 

potential optimization methods. Regarding the limited 

computational ability of ECG machines, an extension for 

MADNN could be simplifying the current model. 
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