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Abstract

A broad variety of algorithms for detection and classifi-
cation of rhythm and morphology abnormalities in ECG
recordings have been proposed in the last years. Al-
though some of them have reported very promising results,
they have been mostly validated on short and non-public
datasets, thus making their comparison extremely difficult.
PhysioNet/CinC Challenge 2020 provides an interesting
opportunity to compare these and other algorithms on a
wide set of ECG recordings. The present model was cre-
ated by “ELBIT” team. The algorithm is based on deep
learning, and the segmentation of all beats in the 12-lead
ECG recording, generating a new signal for each one by
concatenating sequentially the information found in each
lead. The resulting signal is then transformed into a 2-
D image through a continuous Wavelet transform and in-
putted to a convolutional neural network. According to the
competition guidelines, classification results were evalu-
ated in terms of a class-weighted F -score (Fβ) and a gen-
eralization of the Jaccard measure (Gβ). In average for
all training signals, these metrics were 0.933 and 0.811,
respectively. Regarding validation on the testing set from
the first phase of the challenge, mean values for both per-
formance indices were 0.654 and 0.372, respectively.

1. Introduction

Cardiovascular diseases (CVDs) embrace a set of dis-
orders affecting blood vessels and the heart, and usually
appear in the form of cerebrovascular disease, peripheral
artery disease, hypertension, coronary heart disease, heart
failure, and rheumatic heart disease. Nowadays, they are
still the most common cause of morbidity and mortality
worldwide [1]. In fact, more than 30% of all deaths are
attributable to them [1]. Thus, their early diagnosis may
be helpful in preventing premature deaths by enabling suc-
cessful treatments [2]. To this end, the standard 12-lead
ECG signal is an important tool, because it provides in-
formation on the heart’s behavior [3]. However, manual
interpretation of the ECG is not a trivial task, because a

high level of training is required [4]. Additionally, this
task can be very time-consuming, especially when patients
are monitored for long hours [5]. In fact, it is often diffi-
cult to find compelling symptoms of most cardiovascular
diseases and arrhythmias in short ECG recordings, thus re-
quiring monitoring for several hours or days [6]. Current
wearable systems are even able to obtain ECG recordings
during several weeks and months [7], thus making their
manual revision unfeasible and requiring computer-based
interpretation [5].

In the last years, a broad variety of automatic algorithms
have been proposed to detect and classify different rhythm
and morphology abnormalities in ECG signals [8]. Al-
though some of them have reported very promising results,
they have been mostly validated on short and non-public
datasets, thus making their comparison extremely diffi-
cult [8]. To palliate this issue, PhysioNet/CinC Challenge
2020 have been carefully designed [9]. This competition
offers an attractive opportunity to compare algorithms on
a wide set of ECG recordings. Hence, with the aim of
participating in this challenge, a novel method for ECG in-
terpretation based on deep learning and beat-to-beat clas-
sification is introduced in the present work.

The algorithm takes advantage of the high learning ca-
pability presented by the convolutional neural networks
(CNN) to extract the most relevant ECG features with-
out delineation of its fiducial points, as well as without
any other kind of manual or external intervention [10]. In
fact, these networks have been widely used in ECG-based
classification tasks, such as identification of atrial fibrilla-
tion, classification of arrhythmias, detection of sleep ap-
nea, biometric identification of individuals, or detection of
diabetic subjects, among others, providing excellent per-
formance [10–13].

2. Materials

To conduct the competition, 12-lead ECG recordings
lasting from a few seconds to several minutes were col-
lected from different databases, which are briefly described
below. Thus, the dataset proposed for the China Physiolog-
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ical Signal Challenge 2018 [8] is composed of 10,330 ECG
recordings sampled at 500 Hz and with a duration between
6 and 60 seconds. The St Petersburg INCART 12-lead Ar-
rhythmia Database [14] contains 75 30 minute-length ECG
signals extracted from longer Holter records, which were
acquired with a sampling rate of 257 Hz. The PTB Di-
agnostic ECG Database [14] consists of 549 10 second-
length ECG signals obtained with a sampling frequency of
1 kHz from patients with different CVDs. Similarly, the
PTB-XL dataset contains 21,837 10 second-length signals
sampled at 500 Hz. Finally, a Georgia database presents
10,344 10 second-length ECG recordings, obtained with a
sampling rate of 500 Hz from patients exclusively from the
Southeastern United States.

All these ECG recordings were annotated with one
or more labels from different types of rhythm and mor-
phology abnormalites, and mainly constituted the training
group. The test set was not freely available, but it was com-
posed of samples from the described databases, as well as
from one entire new dataset.

3. Methods

The proposed method to detect and classify different
abnormalities in 12-lead ECG recordings involved three
steps. More precisely, every beat in the signal was first
segmented, its time-frequency representation was next ob-
tained, and finally the resulting 2-D image was inputted
to a customized CNN. More details about each stage are
below provided.

3.1. Beat segmentation

The well-known Pan & Tompkins algorithm [15] was
initially used to detect R-peaks in raw lead I and the mean
RR interval was then computed to define a time window in
which every single beat was get. Next, this time window
was applied to the remaining available leads, consecutively
concatenating single beats to generate a new signal, where
the same beat was represented through all leads. An ex-
ample visually describing this approach for a sinus rhythm
beat is displayed in Fig. 1(a). It should be noted that the
considered time window for beat segmentation was cen-
tered on each R-peak found in each lead.

3.2. Continuous Wavelet transform

The resulting signal in the previous stage for each beat
was transformed into a 2-D image through a continuous
Wavelet transform (CWT). The result of this transforma-
tion was a matrix composed of wavelet coefficients con-
taining time-frequency information of the original signal.
Graphic representation of the absolute value of these coef-
ficients using a proper colormap is known as wavelet scalo-

gram, and has been widely used to feed numerous CNN-
based algorithms [10]. For this transformation, a Morlet
function was used as mother wavelet and 48 voices per
octave were chosen to determine the number of wavelet
scales. Fig. 1(b) displays the scalogram obtained for a typ-
ical sinus rhythm beat.

3.3. CNN-based classification

To classify each beat, a 8-layer CNN scheme was specif-
ically designed and trained from scratch. For this last pur-
pose, a total of 130,627 beats were randomly extracted
from the training subset, among which 9 different classes
were noticed. As Table 1 displays, an uneven number of
beats was found for each class, but more than 3,000 sam-
ples were always available.

Regarding the proposed CNN architecture, its input
layer accepted images with a size of 200×1000×3 pixels.
Next, a convolution layer with filter size 7 × 7 was con-
sidered, along with a normalization layer which allow the
use of higher learning rates giving less consideration to the
initialization. Note that a rectifier linear unit was used as
activation function. Next, a pooling layer reduced spatial
dimension of the feature map without lost relevant infor-
mation. Subsequently, a fully-connected layer ensured that
the nine neurons in the previous layer were connected to
all neurons in the current layer. Finally, a softmax function
was responsible for assigning probabilities of belonging to
each output class.

After a training of 20 epochs with mini-batches of 100
samples, conducted by a stochastic gradient descent ap-
proach with a momentum of 0.9 and a learning rate of
0.001, the proposed CNN was ready to classify rhythm
and morphology abnormalities in an entire ECG record-
ing. Thus, the probabilities of belonging to the available
classes were averaged for all beats found in the signal.
Then, the dominant class, i.e., that exhibiting the highest
probability, was assigned to the ECG recording as primary
diagnosis. In the case that other classes presented averaged

Table 1. Number of beats for each class found in the subset
selected for training the proposed CNN-based method.

Class # of Beats
Atrial Fibrillation 26,891
First degree AV block 10,785
Left bundle branch block 3,482
Normal sinus rhythm 15,997
Premature Atrial Contraction 12,671
Premature Ventricular Contraction 15,464
Right bundle branch block 27,856
ST depression 14,291
ST elevation 3,190
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Figure 1. Example of how the proposed method performs on a normal sinus rhythm beat. (a) Concatenation of the
segmented beat for each one of the 12 leads, and (b) its time-frequency representation obtained via CWT.

probabilities larger than 10%, they were also considered in
descending order as secondary diagnoses.

4. Results

The validation of the proposed approach was developed
according to the competition guidelines for the first phase
of the Challenge in which only 9 different classes were
available. Thus, two performance metrics were computed,
i.e., a class-weighted F -score (Fβ) and a generalization of
the Jaccard measure (Gβ). The Fβ index was a weighted
harmonic of precision and recall described in [16]. The
Gβ index was a classical similarity measure on sets with
a lot of practical applications in information retrieval, data
mining, machine learning, and many others [17].

For an unofficial validation of the proposed method,
3,000 ECG signals from the training subset were randomly
selected. In this way, values of Fβ and Gβ of 0.933 and
0.811 were respectively obtained. Although we were un-
able to participate in the final phase of the Challenge, we
obtained official validation results in the first phase (using
the testing subset hidden to the challengers), the perfor-
mance of the algorithm was notably more limited, because
values of Fβ and Gβ were 0.654 and 0.372, respectively.

5. Discussion

In general terms, recent methodologies proposed to de-
tect rhythm and morphology abnormalities in the ECG
signal have reported a promising performance. However,
they have been poorly validated by making use of too re-
duced proprietary datasets. For instance, Li et al. [18]
achieved a discriminant ability greater than 97% when a
CNN-based method was trained and tested with databases

only composed of 24 and 14 subjects, respectively. Sim-
ilarly, Yildirim et al. [13] also developed another CNN-
based algorithm able to classify seventeen different ECG
abnormalities with an accuracy of about 90%. However,
in this case the method was only validated on a dataset
comprising 150 ECG recordings. To obtain a more realis-
tic view of the true capability of these and other methods
to identify ECG abnormalities, the PhysioNet/CinC Chal-
lenge 2020 [9] has collected and shared a database with
more than 50,000 ECG signals, which were obtained un-
der diverse conditions and from different contexts and ge-
ographic regions.

To participate in this competition, the present work has
introduced an algorithm able to automatically classify nor-
mal sinus rhythm and eight types of ECG abnormalities.
The method is based on the idea of analyzing an entire
ECG recording in a beat-to-beat fashion. In this way, the
likelihood of detecting secondary abnormalities, besides
the dominant one, could be maximized. However, the ob-
tained classification results are not as good as initially ex-
pected. In fact, although values of Fβ and Gβ greater than
90 and 80% were respectively reached by analyzing 3,000
ECG signals randomly selected from the training subset,
they were lower than 70 and 40% in the official validation
phase. This reduction in the performance suggests that the
proposed method presents a notable ability to associate the
dominant class to each ECG, but its ability to detect sec-
ondary abnormalities has still to be significantly improved.

Additionally, the obtained results also points to the fact
that the proposed CNN model was not sufficiently trained.
In fact, the ECG recordings available in the initial phase
of the competition were only used for that purpose. More-
over, in these signals only 9 classes were detected, whereas
27 different diagnoses were used to evaluate the perfor-
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mance of the participant methods [9]. Therefore, a wider
training of the proposed algorithm could still improve no-
tably its performance.

Another weakness of the algorithm is that its perfor-
mance relies excessively on the R-peak detection, and
therefore is too sensitivity to the presence of noise and ar-
tifacts. The incorporation of some components with ability
to denoise the signal, as well as to identify those intervals
strongly contaminated with artifacts, could also improve
the method’s performance. Likewise, the use of more than
one technique to detect the R-peaks and only enable fur-
ther processing when their results were consistent could
also prevent erroneous beat segmentation, thus leading to
a better classification of ECG abnormalities. These im-
provements will be addressed in a future work.

6. Conclusions

A novel CNN-based technique to classify different ab-
normalities in 12-lead ECG signals have been proposed
in the framework of the PhysioNet/CinC Challenge 2020.
Although the idea of analyzing an entire ECG signal in
a beat-to-beat way is interesting to detect more than one
abnormality, the method’s performance has proven to be
limited. Nonetheless, a variety of improvements could still
be considered in the future to increase its classification ca-
pability.
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