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Abstract 

In this study we present a system for automated 
processing of signals from the polysomnogram (PSG) for 
the detection of apnoea and non-apnoea arousals. The 
PSG signals were divided into 15 second epochs and 59 
time- and frequency-domain features were derived for 
each epoch. Features from adjacent 4 epochs were 
combined and processed with a bank of ten feed-forward 
neural networks each with a single hidden layer of 20 
units. The system outputs a 200 Hz annotation signal 
containing probability estimates that each sample was 
associated with an apnoea or non-apnoea arousal, or no-
arousal. Data from the Physionet Computing in 
Cardiology Challenge 2018 was used to develop and test 
the system. Performance of the system was assessed using 
three class and two class metrics. With the system 
classifying three classes, the volume under the receiver 
operator characteristic (ROC) surface was 0.75 with an 
optimal specificity of 0.72, a sensitivity of 0.76 for the 
apnoea arousals, and a sensitivity of 0.69 for the non-
apnoea arousals. When the two arousal classes were 
combined into one arousal class, the area under the 
precision recall curve was 0.74, the area under the ROC 
curve was 0.91, with an optimal specificity and sensitivity 
of 0.85. 

1. Introduction 

A wide range of negative health outcomes including 
neurocognitive disorders, mood and mental conditions, 
cardiovascular disease [1], hypertension and stroke [2] are 
associated with low quality sleep. Poor sleep is also an 
established contributor to workplace and road accidents 
[3]. While arousals are a normal feature of the sleep/wake 
cycle, an excessive number of arousals can lead to poor 
sleep quality [4-6]. Respiration interruptions during sleep 
are a common cause of arousals. These interruptions 
include obstructive apnoea and hypopnoea events, 
respiratory effort related arousals and other interruptions 
to breathing. Arousals can also be caused by snoring, 
muscle jerks, pain, and insomnia. 

The most common way to provide a detailed 
assessment of sleep is to record a polysomnogram (PSG) 
which provides range of signals from a sleeping patient 
[7]. Sleep technicians then manually assess the PSG. Part 
of their analysis includes scoring arousals which is a time-
consuming manual task. Automated software that 
processes the PSG information and assists the technician 
in identifying arousals would clearly be of benefit and is 
the topic of this paper. 

The PhysioNet Computing in Cardiology Challenge 
2018 [8] provided the framework for researchers to 
develop and test automatic algorithms for the detection of 
non-apnoea arousals from the PSG and we were one of the 
participating teams [9,10]. For the purposes of the 
Challenge apnoea-related arousals were ignored which 
limited the clinical application of the resulting algorithms. 
In this current study we address this application issue and 
extend the capability of our system to detect apnoea 
arousals. Our resulting system potentially has greater 
clinical application. 

2. Input data 

The data used in this study dataset was provided by the 
2018 Challenge organisers (https://physionet.org/ 
challenge) and is publicly available. It includes 994 
overnight PSG study recordings and associated sleep, 
respiratory event and arousal annotations [8]. All 
recordings were acquired at the Massachusetts General 
Hospital (MGH) sleep laboratories. 

2.1. Signals and expert scorings 

The signals include the airflow, electrocardiogram, 
electroencephalogram (EEG), chin electromyogram 
(EMG), electrooculogram (EOG), pulse oximetry (SpO2) 
and respiratory effort signals. All signals were sampled at 
200Hz. Standard sleep and respiratory events were scored 
by MGH staff. They also determined the time, duration 
and cause of all arousal events. Arousals were then 
grouped into apnoea related arousals and non-apnoea 
related arousals. Apnoea arousals included central, mixed 
and obstructive apnoeas and hypopnoeas. Non-apnoea 
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related arousals included breathing, bruxisms, Cheyne-
Stokes hypoventilations, partial airway obstructions, 
periodic leg movement, respiratory event related arousals, 
snores, spontaneous arousals, and vocalisations 

Based on the arousal events, a target vector sampled at 
200Hz was established for every PSG recording by the 
Challenge organisers. The target values for the non-
apnoea arousals were set to “1”. The target values of the 
apnoea (hypopnoea)-arousals were set to “-1”. The target 
value for the non-arousals sections were set to “0” [8].  

3. Methods 

We adopted the same feature extraction framework as 
previously used by us in the 2018 Challenge. Features 
were extracted from 15 second time windows of data as 
previously we had shown that this provided the longest 
epoch length that maintained satisfactory precision of the 
arousal annotations. The epoch-based annotations needed 
for the training algorithms were determined from the 
200Hz arousal annotations by sampling the arousal 
annotations at the midpoint of every 15 seconds epoch [9]. 

Figure 1 shows an outline of our proposed system. It 
processes SpO2, EMG chin, EOG, respiratory effort, 
airflow, and EEG signals from the overnight PSG 
recordings.  The system first removes artefacts from 
signals and normalizes signals. Following this, the system 
divides the signals into 15 second epochs, calculate 
features per epoch, combines features from adjacent 
epochs, classifies each epoch using a bank of classifiers 
and then finds a combined classifier output for each 
epoch. The final step in the process is to upsample the 
epoch annotations to a 200Hz output signal. The 
annotation per sample is one of “no arousal”, ”apnoea 
arousal” or “non-apnoea arousal”.   

3.1. Features and epoch combiner 

The features extracted per epoch from the PSG are 
shown in Table 1. Full details of the feature extraction 
methods are provided in [9].  

The system was provided with the ability to look 
forward/backwards in time by up to one minute for signal 
changes associated with the arousals. This was achieved 
by combining features from four epochs either side of the 

 

Figure 1. Outline of the proposed automatic arousal detection system annotating apnoea arousal, non-apnoea arousal and no-arousal events. 

Table 1. Features extracted from the PSG signals. 
PSG signal(s) Features Number 
SpO2 Kurtosis. Hypoxic burden. Mean of absolute differences.  

Proportion: <90%, <92%, <94%. Skewness. Standard deviation.  
8 

Chin EMG 
EOG 

Form factor. Kurtosis. Relative band energy: 0-2Hz 2-4Hz. 
Skewness. Standard deviation. 

12 

Abdominal respiratory effort. 
Airflow, Chest respiratory effort 

Signal envelope coefficient of variation 3 

EEG: F3-M2, F4-M1 O1-M2, 
O2-M1, C4-M1, C3-M2 

Approximate entropy. 
Relative band energy: 2-4Hz, 5-8Hz, 9-12Hz, 13-16Hz, 17-32Hz. 

36 

 Total 59 
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current epoch which were then processing by the classifier 
stage. Four epochs were c hosen as previous work by us 
[11] had shown this provided good performance. 

3.3. Classifiers and upsampler 

Two classifiers were used to provide a performance 
comparison. A linear discriminant analysis (LDA) 
classifier [12], and bank of 10 single hidden layer feed-
forward neural networks (FFNN) [13] each with 20 hidden 
units. Both classifiers had a softmax output stage that 
provided three probability outputs of non-arousal, apnoea 
arousal and non-aponea arousal for every epoch. The LDA 
classifier was fast to train, while the FFNN classifier had 
provided superior performance in the 2018 Physionet 
Challenge [9]. The FFNN was trained with a cross-
entropy cost function. 

The outputs of the bank of FFNN classifiers were 
combined by averaging the probability estimates of the ten 
individual classifiers. 

The final stage was to upsample the epoch 
classifications to the 200Hz sample rate of the event based 
annotations using a first order hold filter. 

 

3.5. Performance estimation 

Performance was estimated using 10-fold cross-
validation. The 994 records were randomly divided into 
ten sets containing 99 or 100 records. Nine sets were used 
to train the system and the remaining set used to test 
performance. The sets were then rotated and the combined 
performance results on the test sets calculated.  

Performance was measured using several metrics. First, 
3×3 confusion matrices were calculated over the complete 
range of decision thresholds for the three classes. The 
specificity and sensitivity results from the confusion 
matrices were then used as inputs to a three-way receiver 
operator characteristic (ROC) analysis [14]. A summary 
performance measure was calculated by finding the 
volume under ROC surface (VUROS) which is the 3 class 
equivalent of the area under the ROC curve (AUROC). 

 The three-way ROC was also used to find optimal 
specificity and sensitivity points by finding the point on 
the surface that minimized the Euclidean distance to the 
ideal performance point of (1 1 1). The sensitivity and 
positive predictive results from the 3×3 confusion 
matrices were used to perform a Precision-Recall curve 

Table 2. Performance results* the LDA and FFNN classifier. Results are shown for the three class and two class configurations.  
The two class results are obtained by merging the non-apnoea arousal and apnoea arousal results into one arousal class.  
 Three classes 

(Non-arousal, Non-apnoea arousal, Apnoea-arousal) 
Two classes 

(Non-arousal, Arousal) 
 
 
Classifier 

 
 

VUROS 

Non-
arousal 
spec. 

Non-apnoea 
arousal 
sens. 

Apnoea- 
arousal 
sens. 

AUPRC   
 

AUROC 

Non-
arousal 
spec. 

 
Arousal 

sens. 

 
AUPRC 
Arousal 

Non- apnoea 
arousal 

Apnoea-
arousal 

LDA 0.68 0.68 0.71 0.65 0.14 0.71 0.88 0.81 0.82 0.67 
FFNN 0.75 0.72 0.69 0.76 0.18 0.77 0.91 0.85 0.85 0.74 

Table 3. Normalised confusion matrix* for three classes at the 
optimum specificity and sensitivities using the FFNN classifier. 

  Predicted class 

Ex
pe

rt 
C

la
ss

  Non-arousal Non-apnoea 
arousal 

Apnoea 
arousal 

Non-arousal 0.72 0.22 0.06 
Non-apnoea arousal 0.17 0.69 0.14 

Apnoea arousal 0.05 0.18 0.77 

Table 4: Normalised confusion matrix* for two classes at the 
optimum specificity and sensitivity using the FFNN classifier. 

  Predicted class 

Ex
pe

rt 
C

la
ss

  Non-arousal Arousal 
Non-arousal 0.85 0.15 

Arousal 0.15 0.85 
Abbreviations: AUPRC: Area Under the Precision-Recall Curve, 
AUROC: Area under the ROC curve. FFNN: Feedforward neural 
network; LDA: Linear discriminant analysis; Sens: Sensitivity; 
Spec: Specificity; VUROS: Volume under the ROC surface. 

*Calculated from test-set results of ten-fold cross validation.  

   
Figure 2: Three-way receiver operator characteristic surface 
(ROS) for the test set results of the FFNN system. The volume 
under the ROS is 0.75. The optimum specificity/sensitivity 
points are indicated with the red marker. 
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analysis of the two arousal classes [15]. Performance was 
assessed using area under the curves (AUPRC). 

Second, the cell entries of the two arousal classes in the 
3×3 confusion matrices were combined, producing a 2×2 
confusion matrices representing the performance at each 
decision threshold for a system classifying “non-arousal” 
and “arousal”. The AUROC, AUPRC and optimal 
specificity and sensitivity points were calculated from the 
2×2 confusion matrices. 

4. Results and discussion 

Table 2 shows the key results for the two classifiers. 
The performance of the FFNN outperformed the LDA in 
all measures. For the three class results, the FFNN 
classifier achieved a VUROS of 0.75, a specificity of 
72%, an apnoea arousal sensitivity of 76% and a non-
apnoea arousal of 69%. The AUPRC was 0.18 and 0.76 
for the non-apnoea arousal and apnoea-arousal class 
respectively. Our results suggest that our algorithm detects 
apnoea-arousals more effectively than non-apnoea 
arousals. Possible reasons are that apnoea arousals 
occurred more frequently in the database than the non-
apnoea arousals. Also, non-apnoea arousals have diverse 
causes which results in greater heterogeneity of signals. 

Figure 2 shows the test-set 3-way ROC surface with the 
optimum performance point indicated. Table 3 shows the 
normalised confusion matrix for the three classes at the 
optimum point determined from the ROC surface. It 
shows that non-arousal and the apnoea arousal classes 
tended to be misclassified as the non-apnoea arousal class 
with false detection rates of 0.22 and 0.18 respectively. 
After combining the two arousal classes into one class, the 
AUROC was 0.91 with an optimal specificity/sensitivity 
of 0.85, and an AUPRC of 0.74 (see Tables 2 and 4). 

There are several areas for future work. Our system 
used 531 features which very likely includes some highly 
correlated features, so feature selection may yield a 
smaller higher performing system. The highest performing 
architectures from the 2018 Physionet Challenge included 
convolutional neural network stages and used minimally 
processed sensor data. Adopting similar architectures may 
yield performance gains. 

5.  Discussion and Conclusion 

We’ve presented a system for automated annotation of 
selected signals from the PSG for the presence of apnoea 
and non-aponea arousals. Our best system used a bank of 
10 feed-forward neural networks and achieved a volume 
under the ROC surface of 0.75 with a specificity of 72%, a 
sensitivity of 76% for the apnoea arousals, and a 
sensitivity of 69% for the non-apnoea arousals. When the 
two arousal classes were combined into one it achieved an 
AUROC of 0.91 and an AUPRC of 0.74. 
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