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Abstract 

Cardiac arrhythmia is a group of conditions in which 
falls changes in the heartbeat. Electrocardiography (ECG) 
is the most common tool used to identify a pathology in the 
cardiac electrical conduction system. ECG analysis is 
usually manually performed by an expert physician. 
However, manual interpretation is time-consuming and 
challenging even for cardiologists. Many automatic 
algorithms relying on handcrafted features and traditional 
machine learning classifiers were developed to recognize 
cardiac diseases. However, a large a priori knowledge 
about ECG signals is exploited. To overcome this main 
limitation and provide higher performance, recently, deep 
neural networks were designed and applied for 12-lead 
ECG classification. In this study, we designed decoding 
workflows based on three state-of-the-art architectures for 
time series classification. These were InceptionTime, 
ResNet and XResNet. Experiments were conducted using 
the training datasets provided during the 
PhysioNet/Computing in Cardiology Challenge 2020. The 
best-performing algorithm was based on InceptionTime, 
scoring a training 5-fold cross-validation challenge metric 
of 0.5183±0.0016, while using a low number of parameters 
(510491 in total). Thus, this algorithm provided the best 
compromise between performance and complexity.  

 
 
1. Introduction 

Cardiovascular diseases are the main cause of death, 
responsible for the 31% of the worldwide deaths in 2016 
[1] and the electrocardiogram (ECG) is the most common 
used tool in their diagnoses by non-invasively recording 
the electrical activity of the heart. Twelve-lead ECG 
describes the activity from 12 sites, each lead containing 
features potentially related to a specific arrhythmia. ECG 
analysis is usually manually performed by an expert 
physician. However, manual interpretation is time-
consuming and challenging [2] and these difficulties 
promoted the development of automatic ECG 
interpretation algorithms.  

Automatic algorithms relying on handcrafted features 

(e.g. statistical features, frequency-domain features, time-
domain features) and traditional machine learning 
classifiers were developed to recognize cardiac diseases. 
However, a large a priori knowledge about characteristics 
of the signals is exploited and separate feature extraction, 
selection and classification steps are performed. Lastly, 
these classic algorithms are limited in performance [3], 
precluding their usage as a standalone diagnostic tool. 

Recently, deep neural networks (DNNs) were designed 
and applied to electrophysiological signals [4-7]. This 
provided an end-to-end framework where the most 
relevant features are automatically learned directly from 
raw/lightly pre-processed data without separately perform 
feature extraction and classification. When applied to ECG 
signals [8-10], this enabled statements that resulted highly 
difficult to make even for cardiologists [11]. Among 
DNNs, recently Strodthoff et al. [10] reported outstanding 
results using deep convolutional neural networks (CNNs), 
such as InceptionTime [12], ResNet [13] and XResNets 
[14], on a large public benchmark dataset.  

In occasion of the PhysioNet/Computing in Cardiology 
Challenge 2020 [15], challengers had to build an algorithm 
to automatically identify the cardiac abnormality / 
abnormalities among 27 conditions (see Table 1 for the full 
list of the statements) from 12-lead ECG recordings across 
6 different datasets.  

To this aim, we participated to the competition as 
CardioUniBo team and implemented decoding workflows 
based on InceptionTime, ResNet and XResNets, 
evaluating their performance on the target decoding task. 

 
2. Methods 

In the following sections, the datasets, pre-processing 
procedure, and decoding algorithms are described. 
Experiments were GPU-accelerated via a NVIDIA Titan V 
and PyTorch was used as framework to build and solve the 
optimization of the CNNs. 
 
2.1. Datasets 

 
Among the 6 datasets provided by the organizers of the 

PhysioNet/Computing in Cardiology Challenge 2020, we 
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considered signals from the China Physiological Signal 
Challenge in 2018 sets named CPSC, CPSC-EXTRA 
(6877+3453 examples) [16], from the Physikalisch 
Technische Bundesanstalt (PTB) set named PTB-XL 
(21837 examples) [17] and from the unique set recorded in 
the Southeastern United States named GEORGIA (10344 
examples).  

These datasets were selected because resulted the most 
representative for the target 27 diagnosis and exhibits 
comparable recording lengths (CPSC and CPSC-EXTRA 
from 6 to 60 s, while PTB-XL and GEORGIA of 10 s). 
Each example can be associated with a one or more 
statements (multi-label classification). The statement 
distributions of these datasets are reported in Table 1.  

 
2.2. Pre-processing 

Twelve-lead ECG signals were collected, and the gain 
factor was divided for each lead. Then, a zero-phase 2nd 
order band-pass Butterworth filter was applied between 0.5 
and 40 Hz. Lastly, signals were downsampled to 100 Hz to 
reduce the computational cost and each lead signal was 

standardized.  
The downsampled signals resulting from the 4 datasets 

were augmented by adopting 2 different procedures. At 
first, we extracted consecutive 2.5 s chunks from each 12-
lead ECG signal without overlap (resulting in an offline 
augmentation). Therefore, these chunks of 12-lead ECG 
represented the CNN input with shape of (12,250). This 
also allowed to keep limited the input time dimension and, 
thus, keep controlled the number of trainable parameters in 
the convolutional-to-dense transition. Furthermore, due to 
the presence of 12-lead ECGs with some leads set to zero 
in the datasets, during the optimization of the decoders, 
each lead signal was randomly set to zero with a 
probability of 0.5 (online augmentation) to give more 

robustness to the algorithms when handling 12-lead ECGs 
with zeroed derivations.  

Once pre-processed, the datasets were merged together 
in a multicenter dataset (42511 total examples) with single 
or multiple statements associated to each 12-lead ECG 
data. Five-fold stratified cross-validation was performed 
and, since our team was unable to obtain the scores on the 
test set during the official phase of the challenge, the 
evaluation metrics reported in this study correspond to 

 
Table 1: Statement distributions in the datasets used in the performed experiments. 
 

Statement CPSC + CPSC-
EXTRA 

PTB-XL GEORGIA 

1st degree av block 828 797 769 
Atrial fibrillation 1374 1514 570 
Atrial flutter 54 73 186 
Bradycardia 271 0 6 
Complete right bundle branch block 113 542 28 
Incomplete right bundle branch block 86 1118 407 
Left anterior fascicular block 0 1626 180 
Left axis deviation 0 5146 940 
Left bundle branch block 274 536 231 
Low qrs voltages 0 182 374 
Nonspecific intraventricular conduction disorder 4 789 203 
Pacing rhythm 3 296 0 
Premature atrial contraction 689 398 639 
Premature ventricular contractions 188 0 0 
Prolonged pr interval 0 340 0 
Prolonged qt interval 4 118 1391 
Qwave abnormal 1 548 464 
Right axis deviation 1 343 83 
Right bundle branch block 1858 0 542 
Sinus arrhythmia 11 772 455 
Sinus bradycardia 45 637 1677 
Sinus rhythm 922 18092 1752 
Sinus tachycardia 303 826 1261 
Supraventricular premature beats 53 157 1 
T wave abnormal 22 2345 2306 
T wave inversion 5 294 812 
Ventricular premature beats 8 0 357 
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training cross-validation scores.  
 

2.2. Decoding 

To solve the objective decoding task, InceptionTime 
[12], a ResNet-based architecture proposed by Wang et al. 
[13] specifically for time series classification (here referred 
as “ResNet” for simplicity) and XResNets [14] with 18, 34, 
50, 101 layers, were tested. For each of these architecture 
designs, the hyper-parameters of the convolutional module 
were set as in the original papers. A kernel size of 5 was 
used in the 1-D convolutions in ResNet and XResNets, 
while kernel sizes of 40, 20 and 10 were used in each 
Inception block (6 in total) of InceptionTime as in the 
original paper [12].  

On top of the convolutional module a concat-pooling 
layer was used (concatenation of the output obtained with 
global average and max poolings) as was done in 
Strodthoff et al. [10]. In addition, all the re-implemented 
CNN architectures shared the same dense module, 
implemented as a first fully-connected layer with 128 units 
followed by batch normalization, ReLU non-linearity and 
dropout (𝑝 = 0.5), and a second fully-connected layer with 
27 units (output layer) activated with sigmoid functions. 
The total number of trainable parameters introduced was 
510491, 476187, 697499, 1356955, 1808795, 3645339, 
respectively for InceptionTime, ResNet and XResNets 
with 18, 34, 50, 101 layers.  

Cross-entropy was used as loss function and Adam as 
optimizer with a learning rate of 1e-3 and a batch size of 
32. While training the architectures with a maximum 
number of 100 epochs, early stopping was performed 
(setting the validation set as the 20% of the training set) 
using the validation loss as stop metric. 

Once the trainings ended, for each 12-lead ECG 
recording the chunk-level probabilities were averaged 
together for the chunks belonging to the same recording, 
obtaining recording-level probabilities (from crop-level to 
recording-level probabilities). Then, these probabilities 
were binarized into the predicted statement/statements 
using a threshold of 0.5 for each output neuron. When the 
prediction was empty (i.e. no output probability exceeded 
the threshold set to 0.5), the most probable statement was 
selected.  

To evaluate the CNNs, we computed the metric 
specifically designed for this challenge (here denoted as 
“challenge metric”) [15] and the Area Under the Receiver 
Operating Characteristics (AUROC).  
 
3. Results 

In Table 2 the training cross-validation scores 
(challenge metric and AUROC) obtained in the 
experiments with the deep CNNs are reported.  
 

Table 2. Training cross-validation scores (metrics scored 
adopting a cross-validation scheme on the training sets released 
for the competition) obtained in the performed experiments. 

 
Architecture Challenge Metric 

(mean±std) 
AUROC 

(mean±std) 
InceptionTime 0.5183±0.0016 0.9391±0.0017 
ResNet 0.5091±0.0071 0.9400±0.0015 
XResNet1d (18) 0.5127±0.0051 0.9335±0.0031 
XResNet1d (34) 0.5085±0.0051 0.9307±0.0026 
XResNet1d (50) 0.5180±0.0042 0.9352±0.0037 
XResNet1d (101) 0.5140±0.0047 0.9334±0.0022 
 
All the experiments were conducted on the training 

datasets released, obtaining an average training cross-
validation challenge metric above 0.50 in all cases. The 
obtained training cross-validated challenge scores were 
similar across the architectures, scoring a higher average 
value with InceptionTime. 
 
4. Discussion and Conclusion 

In this study, we designed decoding workflows based 
on three state-of-the-art CNN designs for time series 
classification and applied them to the multicenter ECG 
signals provided for the PhysioNet/Computing in 
Cardiology Challenge 2020.  

From our experiments, InceptionTime resulted the 
architecture with higher training cross-validated challenge 
metric (on average 0.5183) and with less variability, while 
ResNet scored higher training cross-validation AUROC 
(on average 0.9400). Together with ResNet, 
InceptionTime introduced a lower total number of 
trainable parameters (510491 in total) compared to the 
other designs, resulting in a more parsimonious neural 
network. Indeed, comparable performance to 
InceptionTime were achieved only with XResNet1d (50) 
using more than 2x trainable parameters. Therefore, 
InceptionTime resulted the best compromise between 
performance and complexity, which could be useful to 
design models less prone to overfit less-represented 
conditions (e.g. in particular the condition “Premature 
ventricular contractions” represented only with 188 
examples).  

Despite these promising results obtained using CNNs 
on multicenter ECG signals, these algorithms suffer from 
limited interpretability of the learned features. Future 
developments could include designing more explicable 
architectures by adding interpretable layers [6] (layers that, 
once trained, allow a direct interpretation of the learned 
features) and designing even more optimized (in terms of 
trainable parameters) architectures than InceptionTime.  
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