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Abstract 

Manual rhythm classification in 12-lead ECGs is time-

consuming and operator-biased. We present an automatic 

ECG classifier using CinC’s 2020 challenge dataset. In the 

first phase of the Challenge, 9 categories were targeted 

with an ensemble of 4 classifiers. In the second phase, 7 

classifiers were implemented to detect 24 cardiac 

electrophysiological disorders. Five classifiers identified 

abnormalities in different specific regions of the heart’s 

conducting system. Two classifiers were dedicated to 

detect premature atrial and ventricular contractions.  

The methodology is based on the creation of rhythm-

specific intra and inter-patient templates. Firstly, signals 

were divided into 6 regions of interests. Secondly, for each 

region, intra-patient models and inter-patient rhythm-

specific models were computed. The distances from each 

intra-patient model to each rhythm-specific inter-patient 

model as well as heart rate variability features and Global 

Electric Heterogeneity features were introduced into the 

classifiers. 

After a 10-fold cross-validation, for the provided 

training data in the first phase an accuracy of 94.4%0.4, 

and a Challenge metric of 0.644±0.031 were obtained, 

whereas in the second phase an accuracy and Challenge 

metric of 15.0  1.0 % and 0.030  0.009 were obtained. 

 

1. Introduction 

Cardiovascular diseases (CVDs) are the first cause of 

mortality and morbidity worldwide [1]. The standard 12-

lead electrocardiogram (ECG) is an essential tool in 

clinical practice to diagnose CVDs  and to have an initial 

assessment of a patient’s  health condition [2]. Typically, 

manual interpretation of ECGs by expert clinicians is 

needed. This requires skilled personnel with high degree of 

specialization and in some cases inter-operators 

discrepancies are present. An automatic algorithm for 

detection of cardiac abnormalities and classification of 

ECG recordings could aid clinical practice, providing 

clinicians with an objective tool to make an early and 

accurate diagnosis of CVDs [3]. The aim of this work is to 

put together machine learning techniques and 

physiological know-how to build and validate such model, 

using the 6 annotated datasets available for the 2020 

Computing in Cardiology Challenge [4] (team name: 

Germinating).  

 

2. Material and Methods 

2.1. Data 

Six databases were provided: China Physiological 

Signal Challenge in 2018 (CPSC2018), St Petersburg 

INCART 12-lead Arrhythmia Database, the PTB 

Diagnostic ECG Database, the PTB-XL 

electrocardiography Database and the Georgia 12-Lead 

ECG Challenge Database. In total, 43,101 labeled 12-lead 

ECGs with 111 different cardiac abnormalities labelled 

following the SNOMED-CT coding system. Only 24 

disorders were targeted: 1st degree AV block (IAVB), 

atrial fibrillation (AF), atrial flutter (AFL), bradycardia 

(Brady), incomplete right bundle branch block (IRBBB), 

left anterior fascicular block (LAnFB), left axis deviation 

(LAD), left bundle branch block (LFBBB), low QRS 

voltages (LQRSV), nonspecific intraventricular 

conduction disorder (NSIVCB), pacing rhythm (PR), 

premature atrial complex (PAC), premature ventricular 

complex (PVC), prolonged PR interval (LPR), prolonged 

QT interval (LQT), Q-wave abnormal (QAb), right axis 

deviation (RAD), sinus arrhythmia (SA), sinus bradycardia 

(SB), normal sinus rhythm (NSR), sinus tachycardia 

(STach), T-wave abnormal (TAb) and T-wave inversion 

(TInv), the rest were considered “Unscored” and ignored. 

For the first phase, also ST elevation (STE) and depression 

(STD) were considered. 

 

2.1. ECG preprocessing 

Two median filters were applied to obtain the baseline 

of each ECG signal that was then subtracted to the original 

ECG to obtain a baseline corrected signal. Power line and 

high-frequency noise were removed with a finite impulse 

response low-pass filter with equal ripple in the pass and 

stop bands. The 3-dB point of the filter was 35 Hz. R peaks 

were detected using Pan Tompkins’ algorithm [5]. To 

minimize misdetections, R peaks were detected on 5 leads 

with positive QRS (I, II, III, aVF, V4, V5, V6). An impulse 
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train signal was built based on the R peaks detected for 

each lead; a Gaussian filter was applied to smooth the R 

series, then signals were aligned through a cross-

correlation procedure, using V5 as reference and finally the 

median signal among the 5 series was computed. On the 

obtained signal, the Pan Tomkins algorithm was applied to 

obtain the R peaks used on the rest of the analysis.  

 

2.2. Heart rate variability features 

The mean and standard deviation of the RR intervals 

was computed, along with the standard deviation of the 

difference of consecutive RR intervals, the percentage of 

successive interval differences greater than 50 ms (pNN50) 

and the root mean square of successive differences 

(RMMSD).  

 

2.3. Intra and inter-patient models 

Inter-patient models that gathered the median behaviour 

of each electrohpysiological disorder in the ECG were 

built for different signal segments of clinical significance. 

These models were used to measure the distance of each 

patient to the ECG pattern typical of each 

electrophysiological disorder.  

Firstly, ECG windows of interest were selected based 

on the expected occurrence of different electrical events 

(all values referred to the location of R peak): P-wave 

(from -300 ms to -40 ms) [6], QRS-complex (-70 ms to +60 

ms), PQ-ST (PT-segment with the removal of the QRS-

segment, from -150 ms to +250 ms, removing the segment 

from -55 ms to + 55 ms), T-wave (from +100 ms to +350 

ms) [7], PR (from -288 ms to the R peak), RT (from the R 

peak to +258 ms).   

Secondly, intra-patient templates were computed for 

each of the above-mentioned segments. For each lead, all 

windows were aligned and the median waveform, 

representative of the analyzed subject, was calculated. The 

mean standard deviation of all windows was stored as a 

feature. Thirdly, the maximum cross-correlation index was 

computed between each individual region of interest and 

the median intra-patient template. Fourthly, for each 

rhythm, the templates of the correspondent subjects of the 

training set were aligned and the median rhythm template 

was obtained. Finally, the maximum cross-correlation 

between each intra-patient templates and each of the inter-

patient models with the corresponding lags were stored as 

features. In Figure 1, an example is visible for the RT 

segment for NSR, RBBB and LBBB. On the left panels, all 

RT segments in the recording of a subject are depicted with 

the obtained intra-patient template in red. On the right, the 

median intra-patient templates of all the subjects are 

plotted with the resulting inter-patient template in red.  

 

2.4. GEH features 

Global Electric Heterogeneity (GEH) features were 

computed using the three open source toolboxes provided 

by the challenge: HRV toolbox [8], ECGkit [9] and GEH 

parameter extraction [10], [11] and origin point [12]. These 

features included: azimuth, elevation, and magnitude of 

spatial peak QRS, T and spatial ventricular gradient (SVG) 

vectors, azimuth and elevation of QRS, T vectors and 

Wilson’s area SVG, scalar value of the SVG, and peak and 

are of the spatial QRS-T angle [10], [11]. 

 
Figure 1. Intra and inter-patient templates for the RT segment 

of the rhythms Normal, RBBB and LBBB. All the segments of a 

recording are overlapped in the intra-patient plots, whereas in 

the inter-patients plots, the median segments of all the subjects 

with the respective condition are depicted. The median segments 

are in red. 

2.5. Classifier ensemble 

The classification strategy adopted was to create an 

ensemble of classifiers, each of them focused on a specific 

region of the cardiac conductive system. A distinction was 

made between sporadic conditions as PAC and PVC, and 

stable conditions, all the other pathologies. As most signals 

ranged from 6 s to 60 s, all arrhythmias were considered 

present on the whole signal.  

During phase 1, the detection of permanent conditions 

was distributed into different classifiers depending on the 

ECG region where the electrophysiological disorders were 

manifested (Table 1). This yielded one classifier (C1) 

including the cross-correlation values between inter-

patient and intra-patient of the P-wave and PR interval, and 

another one (C2) including the QRS complex, RT segment 

and T-wave information. Both classifiers included GEH 

and HRV features, as well as age and sex.  

Given the increase in the amount of rhythms included 

in phase 2, the detection of permanent conditions was 
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distributed differently, according to the cardiac region of 

occurrence: 

• C1: Atrial tissue  

• Purkinje system  

o C2: Sinoatrial node  

o C3: Atrioventricular (AV) node  

o C4: Bundle branches 

• C5: Ventricular tissue  

Cross-correlation values between inter-patient and 

intra-patient models were included as: P-wave and PR 

segments for C1 and C3, all segments for C2, and QRS 

complex, PQ-ST segment, T wave, and RT segment for C4 

and C5. HRV and GEH features as well as age and sex 

were included in all classifiers. 

For each of the sporadic conditions (PAC and PVC) an 

individual classifier was designed in both phases, which 

led to a total of 4 classifiers in phase 1 and 7 in phase 2. C6 

and C7 included all the HRV features and the cross-

correlation values between the intra-patient template and 

the 3 beats with the shortest preceding RR interval for the 

QSR and P-wave segments. Signals classified as AF or 

AFL were not taken into consideration for possible PAC or 

PVC.  

In phase 1, C1 and C2 were support vector machines. 

PAC and PVC classifiers used bagged trees. For the second 

phase, in which 24 categories were included, all classifiers 

used boosted trees. All classifiers were implemented in 

Matlab 2020a and trained using a 10-fold cross-validation. 

 

3. Results 

The results obtained after the 10-fold cross-validation 

of the provided datasets for phase 1 and 2 of the challenge 

are gathered in Tables 1 and 2, respectively. Sensitivity and 

specificity values are displayed along with the number of 

signals present in the dataset for each rhythm of study.  In 

addition, the sub-indexes C1, C2, …, C7 in the Rhythms 

column indicate the classifier in which the rhythm was 

included.  In both phases specificity (Sp.) values were 

higher than sensitivity (Se.) ones. Results in phase 1 were 

superior than those in phase 2. Categories not detected by 

the classifier in phase 2 have been excluded from Table 2.  

Table 3 gathers the overall results obtained for the 

classifier ensembles of phases 1 and 2 after a 10-fold cross-

validation on the databases provided. The Challenge 

Metric (CM) used to evaluate the classifiers varied from 

phase 1 to phase 2. While in phase 1 it corresponded to the 

geometrical mean between Fβ measure and Gβ measure, on 

phase 2 a new scoring system was used to reflect the value 

of the algorithm in a clinical setting: it awarded full credit 

to correct diagnoses and partial credit to misdiagnoses with 

similar risks or outcomes similar to those of the actual 

diagnosis.  

 

Table 1. Classification results on the test set after 10-fold 

cross-validation on the CPSC dataset labelled according to 

the first phase of the challenge.  

 

Rhythms Subjects Se(%) Sp(%) 

AFC1 1221 94.6±0.02 95.9±0.01 

IAVB C1 722 88.1±0.05 97.1±0.01 

LBBB C2 236 85.6±0.08 98.5±0.00 

NSR 918 78.8±0.04 93.7±0.01 

PAC C3 616 84.5±0.06 90.3±0.01 

PVC C4 700 87.8±0.02 93.5±0.01 

RBBB C2 1857 89.5±0.02 96.5±0.01 

STD C2 869 69.6±0.05 96.8±0.01 

STE C2 220 37.2±0.09 99.3±0.00 

 

Table 2. Classification results on the test set after 10-fold 

cross-validation on all the datasets labelled according to 

the second phase of the challenge. 

 

Rhythms Subjects Se(%) Sp(%) 

AFC1 3475 94.55±1.19 93.97±0.56 

AFL C1 314 16.33±6.77 99.70±0.10 

IAVB C3 2394 92.32±1.82 81.08±1.76 

IRBBB C4 1611 5.78±2.43 99.77±0.14 

LAD C4 6086 56.52±5.13 86.84±0.83 

LAnFB C4 1806 56.29±14.67 97.60±0.58 

LBBB C4 1041 31.38±3.64 99.71±0.09 

LQT C5 1513 8.91±2.98 99.08±0.54 

PAC C6 1944 65.88±4.20 91.61±0.84 

PVC C7 1253 50.22±7.17 85.36±1.45 

RBBB C4 3085 89.53±2.39 95.70±0.52 

SB C2 2359 43.20±2.69 98.95±0.20 

NSR C2 20846 90.48±0.61 70.38±1.55 

STach C2 2402 86.78±2.91 99.25±0.20 

TAb C5 4673 56.57±7.34 78.75±4.07 

 

Table 3. Classification results on phase 1 and 2 for 10-fold cross-validation of the provided datasets.   

 

Ph. AUROC AUPRC Accuracy F Fbeta Gbeta CM 

1st 0.099±0.009 0.0190.002 0.944±0.004 0.727±0.019 0.763±0.019 0.525±0.025 0.644±0.031 

2nd 0.541±0.002 0.0830.001 0.148±0.009 0.116±0.004 0.144±0.004 0.062±0.002 0.030±0.009 

Ph=phase; AUROC=area under the receiver operating curve; AUPRC=area under the precision-recall curve. 
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4. Discussion 

The aim of this work was to propose an automatic 

algorithm capable of identifying different cardiovascular 

diseases using 6 different databases with 43,101 labeled 

recordings made available by the PhysioNet/Computing in 

Cardiology Challenge 2020 [4]. Several attempts have 

been already described in literature [3], [13], [14], [15]. 

Currently, the role of clinicians is still fundamental for the 

final diagnosis, but a support role from computers could 

provide a useful tool to aid them for early and correct 

diagnosis of cardiac abnormalities.  

The presented method intended to follow a 

physiologically consistent approach. An ensemble of 

classifiers was built focusing each of them on specific 

cardiac regions. The electrophysiological disorders of 

study were distributed into each of the classifiers 

depending or their region of incidence.  ECG signals were 

divided into regions of interest and a comparison was 

performed between intra-patient models and inter-patient 

rhythm-specific models. In phase 1 the methodology 

succeeded in detecting all disorders with specificity higher 

than 90% and sensitivity higher than 84%, except for STE 

and STD. These results are in line with those already 

present in literature  [15], although as different databases 

are used,  a comparison is not trivial. These results suggest 

that intra-patient and inter-patient models manage to 

capture electrophysiological disturbances of different 

nature and areas of the cardiac tissue.  

However, results obtained in phase 2 show that the 

metrics used are not enough if a larger number of 

conditions with often similar expression in the ECG are 

targeted, as IRBBB and RBBB, IAVB and LPR, LAnFB 

and LBBB, among others. In each classifier (C1, C2, …, 

C7) at least a cardiac abnormality was detected with good 

results i.e. AF in C1, STach in C2, IAVB in C3, RBBB in 

C4. However, the models built and/or the metric obtained 

seemed to be unable to distinguish among such an amount 

of rhythms exhibiting similar morphologies.  

 

5. Conclusion 

We obtained promising results for the detection of a 

limited number of electrophysiological abnormalities in 

short signals.  Further development is needed for its 

application to a high number of disorders, possibly through 

the implementation of convolutional neural network.  
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