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Abstract

In this work, we present an algorithm for automatically
identifying the cardiac abnormalities in ECG records with
the various number of leads. The algorithm is based on
the modified ResNet convolutional neural network with the
attention layer. The network input is modified to allow us-
ing a single network for different lead subsets. In an offi-
cial phase challenge entry, our BUTTeam reached the 15th
place. In our test challenge entry, we have achieved 0.470,
0.460, 0.470, 0.460, and 0.460 of the challenge metric for
12, 6, 4, 3 and 2 leads with ranking 14th, 14th, 11th, 15th
and 11th place, respectively. From additional evaluation of
other lead subsets, the leads representing a common heart
axis orientation achieved the best detection results. How-
ever, all lead subsets performed very similarly.

1. Introduction

Deep learning-based ECG classifiers speed up diagnos-
tics, save medical specialists’ time and reduce human di-
agnostic inconsistency. The recent boom of low-cost and
easy-to-use reduced-lead ECG systems challenges us to
develop AI-based ECG classification working with fewer
leads but achieving nearly the same results as standard 12-
lead ECG classifiers.

In this year’s PhysioNet Challenge [1] we present the
results of ECG classification into 27 categories using dif-
ferent combinations of ECG leads. The first set of combi-
nations was straightforwardly made according to the lead
system types (e.g., selected chest and limb leads and com-
binations of both). For other combinations, we selected
the leads with presumed benefits in the representation of
specific anatomy-physiological phenomena (e.g., lead II
is able to capture the P wave of variable morphology and
chest leads are known to be helpful in ventricular arrhyth-
mia diagnostics [2]). Finally, 1-lead systems could be one
of the most interesting in wearable applications due to low
computational demands, whereas multiple-lead ones could

be more accurate in case of multi-class problems on one
side and could be highly redundant on the other side. Com-
pared to other studies in this field (e.g., [3]), our solution
allows simple and fast training of the models due to the
adaptable input attention layer. The models were verified
on an extensive number of different ECG records.

2. Material and Methods

2.1. Data and preprocessing

This paper is a part of PhysioNet/Computing in Cardiol-
ogy Challenge 2021 – ”Will Two Do? Varying Dimensions
in Electrocardiography” [4, 5]. The training dataset con-
sists of 12-lead ECG signals with 27 diagnoses to classify
([6–11]). For evaluation, datasets with the synthetically re-
duced number of leads are created (with 2/3/4/6/12-leads
as shown in the first column of Table 1). Total 88,253
ECGs were shared publicly as training data, 6,630 ECGs
were retained privately as validation data, and 16,630
ECGs were retained privately as test data.

The data prepossessing consisted of resampling, 50/60
Hz filtration, baseline wandering filtration and replication
of the signals to achieve a fixed length. Resampling to
150 Hz was performed with linear interpolation and anti-
aliasing FIR filtration. Undesired 50 and 60 Hz were re-
moved via a second-order IIR notch filter [12] and base-
line wandering was eliminated by a subtraction of a mov-
ing average weighted with 6 s long Blackman window
[13]. Too short signals were replicated to achieve the 15
s length, whereas too long signals (4.2 %) were excluded
from the training set. However, during the test phase, the
long ECGs are split into 15 s long segments. The segments
are analysed by the model separately and then the results
are merged in such a way that all pathologies found in any
segment of ECG are concerned in the final prediction.
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2.2. Model Architecture

The proposed 1D Convolutional Neural Network (CNN)
architecture is based on a residual neural network (ResNet)
[14]. The model architecture is shown in Figure1. From
the manually tested settings of the hyper-parameters, the
following have shown to be the most efficient from the
classification performance and computational time re-
quirements (according to the challenge rule) point of view:
the number of filters in the first layer n = 24, number
for residual convolutional sub-blocks L = 3, and number
o blocks K = 7. Moreover, we have included multiple
heads for the adaptive number of leads and attention layers
on the network output, which are described in the follow-
ing section.
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Figure 1: The architecture of proposed model with an adaptive number
of leads on the input and attention on the output. k – block number of
ResNet; K – number of blocks; L – number of convolutional sub-blocks
with residual connection; n – number of filters in first layer; conv3(n) is
convolution of filter size 3 and n filters. Each conv3 stands for a layer
with convolution, batch normalization and ReLU non-linearity.

2.3. Adaptive number of leads and output
attention

In the standard setting, different networks have to be
trained for different number of ECG leads. Such networks,
however, differ from each other only in the number of con-
volutional weights in the first layer, whereas the rest of
the layers are the same. This opens the opportunity to
”share” the weights between lead-specific models. One
possible way is to share the whole network, but to replace
the first layer and retrain the model for a particular number

of leads. This will result in faster training due to initialisa-
tion from the pretrained network [15]. However, this solu-
tion still results in producing the number of models equal
to the number of lead combinations. Our original solution
allows to train a single network for the various number of
leads simultaneously. This is shown in Figure1, where all
convolution layers (convolutional heads) for all lead con-
figurations are kept within the network and for each sig-
nal, a suitable head is applied. For each training iteration,
a batch of signals with various randomly generated lead
combinations is generated and used to train the model.

In the last layer of our network, an attention mechanism
[16] was adopted in order to aggregate information from
the whole signal. In addition to the classification improve-
ment, the attention mechanism also generates so-called at-
tention map, which can be used for the network decision
interpretation. Compared to the original definition from
[16]), in our case, the fully connected layers for all posi-
tions can be calculated effectively with the convolution of
filter size 1, which leads to the calculation shown in Fig-
ure1.

2.4. Losses and implementation details

For the training of the proposed network, two different
loss functions were used – weighted cross-entropy (WCE)
and Challenge metric loss (CM) [17] specifically designed
to minimise the differentiable version of the challenge met-
ric from our previous work [17]. Training with CM loss
seems to be unstable and leading to suboptimal results.
Therefore, the network was first trained with WCE loss
and then retrained with CM loss with learning rate for
WCE 10−2, 10−3, 10−4 and for CM 10−2, 10−3, 10−4

and trained for 40, 20, 10 epochs and 20, 15, 10 epochs,
respectively. The learning rates were manually adjusted
for the optimal speed of convergence.

Adam optimizer with decoupled weight decay [18] (λ =
10−5) was used for training with β1 = 0.9, β2 = 0.999
and batch of size 64. Several data augmentation tech-
niques were applied on the training set, including random
circular shift, signal amplification along the voltage axis
(up to ± 20 %) and signal stretch along the temporal axis
(up to ± 10 %). The augmentation procedures were ap-
plied to the signals with the probability 0.8. The code is
available at https://github.com/tomasvicar/
BUTTeam_ECG_classsification_CinC_2021.

3. Results and Discussion

To evaluate the models within the design process,
the available training dataset was divided into in-house
train/validation/test sets in 8/1/1 ratio. Here, the evalua-
tion on the in-house test set, on the challenge validation set
and on the challenge final test set is referred as training-
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Table 1: Challenge metrics for different network settings and various combinations of ECG leads specified by challenge tasks. Training-split results
correspond to the evaluation on a random subset of training data (in-house train/test/valid split). Validation results correspond to the output from the
leaderboard of the official challenge phase. Test results were obtained on the final challenge test set.

training-split validation test

leads initial multi-head multi-head
w/o att. multi-head multi-head

I, II, III, aVR, aVL, aVF, V1-V6 .659 .648 .629 .526 .470
I, II, III, aVR, aVL, aVF .638 .633 .614 .507 .460
I, II, III, V2 .644 .641 .625 .518 .470
I, II, V2 .641 .641 .623 .519 .460
I, II .635 .634 .613 .507 .460

split, validation and test, respectively. Results obtained
for the initial network (i.e., several networks trained sepa-
rately for each lead combination), multi-head network (i.e.,
one network trained simultaneously for different combina-
tions of leads) and multi-head network without attention
(i.e., the network with global max-pooling instead of at-
tention layer) are summarised in Table 1. The multi-head
network was trained with the same settings as the initial
network including the same number of epochs. The only
difference between the networks was in the batches, which
consisted of signals with different lead sets. Thus, only a
single network was trained instead of 5 separate networks,
which took 5-times less time than the initial network train-
ing. Moreover, only a single, ”universal” network is re-
quired for evaluation. However, this leads to a small drop
in network performance on training-split by 0.011, 0.005,
0.003, 0.000, and 0.000 for 12, 6, 4, 3 and 2 leads, re-
spectively. The main drop in performance happened for 12
leads, whereas the performances of 3 and 2 lead settings
were the same as for initial network. It was expected be-
cause for 2 leads (I and II), these leads are shared between
various lead subsets resulting in sharing the extracted fea-
tures. On the other hand, for 12 lead ECGs, specific fea-
tures have to be extracted to use otherwise unused leads.
Finally, we removed attention from our network to test its
significance. It leads to a significant drop in network per-
formance on training-split by 0.019, 0.019, 0.016, 0.018,
and 0.021 for 12, 6, 4, 3, and 2 leads, respectively. In our
test challenge entry, we have achieved 0.470, 0.460, 0.470,
0.460, and 0.460 of the challenge metric with ranking 14th,
14th, 11th, 15th and 11th place, respectively.

3.1. Leads analysis

Electrode placement may have a substantial impact on
the amount of information we can retrieve under the con-
dition of a limited number of ECG leads in scenarios such
as home monitoring [19]. To exhaust the possibilities given
by this year’s challenge topic, we evaluated more lead
combinations to determine which one did the best work
(see Figure2). Considering only single lead arrangements,
the highest score of 0.622 was achieved by using lead II.
This is in accordance with other studies [2, 3], where a

strong relationship between the main electrical axis and
lead II was shown. The 2nd and the 3rd best perform-
ing leads – aVR and aVF (with the score of 0.612 in both
cases) – represent the electrical axis in similar way as the
lead II. Puurtinen et al. in [20] stated that the area around
the precordial leads V2, V3 and V4 and above V1 and
V2 is the best for QRS complex and P wave detection.
We, therefore, expected these leads to be helpful in iden-
tification of arrhythmias manifesting in these parts of the
ECG. Interestingly, in our setup the best performing pair
of precordial leads were those close to the anterior and left
lateral side of the heart, with the highest score of 0.628
and 0.627 for pairs V4-V6 and V3-V5, respectively. Fur-
ther improvement was reached by adding ECG signals ei-
ther from the remaining original Einthoven’s or precordial
leads. The best overall score of 0.670 was obtained for
the combination of leads II, III, V1–V6. All those leads
are known to be uncorrelated, which obviously helped the
model to better learn ECG features. This hypothesis is fur-
ther supported by the substantial worsening of the metrics
by including the rest of the highly correlated leads aVR,
aVL and aVF.

4. Conclusions

Our algorithm based on the modified ResNet CNN with
the attention layer automatically identifies the cardiac ab-
normalities in 12- to 2-lead ECG records. The input of
the network is modified to allow using a single network
for different lead subsets. Our BUTTeam reached 15th
place and achieved overall 0.460 of the challenge metric
in the official test challenge phase entry. Other lead sub-
sets were evaluated, where the best results were obtained
for the leads (and leads combinations) that reflect the heart
electrical axis orientation well. To conclude, any presented
lead subset is worth comparing to standard 12-lead ECG.
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