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Abstract 

Heart abnormalities represent around 32 % of the 

deaths for illnesses in the world. This work presents an 

automated pattern recognition method for detecting 25 

different cardiac arrhythmias and the normal sinus rhythm 

type. A two-dimensional convolutional recurrent neural 

network (2D-CRNN) model was employed by using raw-

data images and signal spectrograms. With a database of 

88,253 ECG signals of 12-leads, a four-step method was 

created. 1. Preprocessing. The data were filtered and 

downsample or filled in so that they were the same length. 

2. Representation. Two sets of images were obtained, one 

with the time series and the other with spectrograms 

through Wavelet Synchrosqueezing (WS). 3. Feature 

extraction. A CNN network was chosen to get relevant 

features of the images; these were flattened in a vector to 

feed a recurrent neural network. 4. Classification. A fully 

connected layer was used to classify the signals. A 10-fold 

cross-validation method (CV) was executed. The grid 

search technique was used to obtain the optimal threshold 

to improve the Challenge Score (Ch-score). Results: With 

this model, our UIDT_UNAM team received an unofficial 

score of 0.34 for all sets of established leads utilizing the 

hidden test data. 

 

1. Introduction 

Heart abnormalities are the leading cause of death 

worldwide, with an estimated 32% in total with about 17.9 

million people [1].  Cardiac arrhythmias (CAs) are the most 

common, and, in clinical practice, the gold standard for 

diagnosing them is using an electrocardiogram (ECG) [2]. 

ECG is a technique that captures the electrical activity 

involved in the functioning of the heart and results in a 

signal composed of cardiac impulses (beats). The analysis 

of these signals is fundamental to a proper diagnosis. The 

early detection of  CAs and their treatment for sudden 

cardiac death (SCD) prevention represents a significant 

opportunity to reduce mortality further [2].  

However, diagnosis of CAs usually requires evaluating 

twelve different points on the human body simultaneously, 

obtaining a 12-lead ECG; for this, it is necessary to: a) high-

cost clinical equipment and b) experienced clinicians with 

high knowledge in different CAs. The above makes it 

challenging to obtain an accurate diagnosis in many places, 

especially in developing countries. In addition, Physicians 

take quite a bit of time when analyzing a 12-leads ECG 

since they perform a detailed analysis of the morphology of 

each beat and then correlate the irregular segments between 

the different leads to detect a specific CA.  

Consequently, this study presents a way to automatically 

obtain such an analysis to assist the physician in the 

diagnostic task. It also evaluates the practicality of using 12-

lead-ECG versus reduce-lead ECG, allowing new lower-

cost clinical equipment design. 

Recently, there has been increasing research focused on 

the automatic detection of CAs using 12-lead-ECGs. The 

most promising studies are based on Machine Learning 

(ML) and Deep Learning(DL) methods [3]. Theoretically, 

most of these algorithms achieve accuracies > 90% in the 

classification of CAs. However, the promising outcome of 

those tests is a consequence of using small and 

homogeneous datasets. Therefore, A. Perez et al. [4] 

proposed assembling multiple global databases that contain 

more than 100 classes of CAs and launched the 

Physionet/CinC 2020 challenge.  

In that challenge, they evaluated 41 algorithms in the 

final stage (test set) developed by different academic and 

industry groups. One of the results was that no algorithm 

exceeded 55% of the proposed score, mainly due to the 

imbalance, variety of classes, and multiple diagnostics by 

signal. 

For 2021, these same organizers posed the same problem 

with validating different sets of lead ECGs; additionally, 

they increased the number of data [5]. This suggested a 

challenge to solve a real-life problem. The algorithm 

presented in this paper is one of the algorithms submitted to 

the Physionet/CinC 2021 challenge (PCC 2021). 

 

2. Material and methods 

Our approach is initially based on deep learning 

techniques for diagnosing CAs implemented in [6]. They 

use a parallel deep neural network in which each signal 

represents it as an image that contains frequency-time 

information, and then those images are using as input data 

in a convolutional neuronal network (2D-CNN). 

In this study, the novelty lies in a new deep neuronal 

network, which not only uses known convolutional 

networks as VGG-16 and a fully connected network to 

classify the signals: Instead, we propose a new end-to-end 
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network with a CNN stage for extraction of features 

followed by a recurrent neuronal network (RNN) to add 

temporary features (2D-CRNN). 

 

2.1. Data set 

 
For the official phase of PCC-2021, the organizers have 

made available 88,253 12-lead ECG recordings containing 

132 classes of CAs and normal sinus rhythm (NSR) class, 

of which 30 types are the most common relevant in clinical 

practice, and they chose to evaluate the algorithms 

submitted, a detailed description of these data is presented 

in [5].  

For the analysis and training task, we only take the 

signals with valid CAs, and for the signals with multiple 

CAs diagnostics, we make a copy for each class. Likewise, 

we replaced four classes that presented similarity according 

to [5], obtaining 25 classes of CAs and NSR class at the end.  

Figure 1 shows the histogram of the data per class of CAs 

after this procedure. There we have a total of 111,425 12-

lead ECG records. This data set was stratifically divided 

into training/validation and testing sets, using 85% and 15% 

of the data, respectively. 

 

 
Figure 1. Histogram of the data per CA class in the 

database. 

 

 

2.2. Preprocessing signals 

In order to obtain a homogeneous data set, each signal is 

preprocessed, matching the sampling frequency to 200 Hz 

and using a Butterworth bandpass filter between 1 - 100 Hz.  

Then, we took the first 10 seconds of each sign for each 

lead, and if the signal was shorter over time, we performed 

an upsampling using zero padding. 

This interval size is the average recording time by signal 

throughout the database; this allows us to obtain the relevant 

information of each signal. 

 

 

2.3. Two-dimensional representation 

At this stage, we obtained the two-dimensional 

representations of each signal for each lead. We initially 

form the first set of images by transforming each signal into 

a 128 x 128 pixel image containing the time series, as shown 

in figures 2a), 2b), and 2c).  

The second set is formed using the Wavelet 

Synchrosqueezing Transform (WSST) in each lead; with 

this method, we obtain information about the behavior of 

each signal in the time-frequency-amplitude space. 

 

2.3.1. Wavelet Synchrosqueezing Transform  

ECG signals are non-stationary signals in which changes 

in behavior occur at an instant of time that are unpredictable 

given previous data. For this reason, it is essential to capture 

this changing information as accurately as possible.  

The WSST is a suitable method for analyzing this type 

of signal with which we obtained a time-frequency 

representation (spectrogram) of the signal. This graph 

contains the instantaneous frequencies over a short period: 

This is achieved by decomposing the signal into different 

sub-bands orthogonal to each other [7].  

The first step is to obtain the continuous wavelet 

transform (CWT).  [8].  

 

                 𝑊𝑥(𝑎, 𝑏) =  𝑎−
1
2 ∫ 𝑥(𝑡)𝜓̅ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡            (1) 

  

where 𝑥(𝑡)  is the preprocessed ECG signal, 𝜓 is the base 

wavelet function, 𝑎 is a scale parameter, and 𝑏 is a 

translation parameter. 

The second step is to obtain an analytical signal, 

extracting the instantaneous phases by deriving 𝑊𝑥 respect 

to the translation 𝑏. 

 

                           𝜔𝑎,𝑏 = −𝑖(𝑊𝑎,𝑏)
−1 𝜕

𝜕𝑏
𝑊𝑎,𝑏                     (2) 

 

Dividing 𝜔 by 𝑖2𝜋 we obtain the instantaneous 

frequencies (IF) of the signal, with which we obtain 

concentrated high-resolution time-frequency patterns. 

Finally, we reassign (synchrosqueezing) the 𝜔 values to 

center the energy of the spectrogram towards the IF curves 

obtaining a sharper spectrogram. An example of these plots 

is shown in figures 2d), 2e), and 2f). 

As a result, we obtained a set of 24 images (12 raw data, 

12 spectrograms) for each signal in the case of the 12-lead 

ECG from the arrhythmia datasets used here.  
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Figure 2. 2D representation of lead No. 2 of different 

types: a, d) normal sinus rhythm (NSR),  b, d) St 

depression (STD), and c, f) Premature atrial 

contraction (PAC). 

 
 

With these representations, we can capture 

information in multiple spaces that are not perceptible 

in standard time series analysis. However, it is not so 

subtle to evaluate these images manually, so we show 

below an automatic method that extracts features from 

them to classify between different types of CA. 

 

2.4. Deep learning model 

CNNs are deep learning (DL) methods focused on 

analyzing information formed by a series of convolutional 

operations in which filters of different sizes are applied, 

which allows obtaining features in an automated way. The 

weights of these filters are adapted in the training stage to 

get the best accuracy in the classification task by employing 

the backpropagation algorithm on a large amount of data.  

 

 

2.4.1. Model description 

The model is composed in principle by two CNNs in 

parallel, in which the input data are the set of images 

obtained in section 2.3. 

Each CNN functions as a feature extractor and has a 

Resnet18 based structure, where residual blocks help to 

keep the gradient from vanishing at minimal values. 

After obtaining the features in parallel, we used a flatten 

layer to join them as a time series. 

To improve the understanding of these sequences, we 

added a Bidirectional Long short-term memory (BiLSTM) 

network with two-layer. 

At the end of this array, a fully connected network with 

a Softmax function takes the output of the BiLSTM network 

and predicts the best label for the input data. The model and 

parameters of this network are shown in figure 3. 

 

 
    Figure 3. 2D-CRNN model architecture. 

 
 

3. Results and Discussion 

We used the 10-fold cross-validation (CV) method to 
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train and evaluate the model. Different hyperparameters 

were tested during the training phase to find the best model, 

the main parameters we took were the learning rate and the 

batch size, and the best performance was obtained with the 

values of 0.001 and 256, respectively. We also performed a 

grid search to find the optimal threshold (Th) value to 

indicate multiple CAs in the same signal; the best Th value 

found was equal to 0.07. 

The number of epochs was set at 50 with an early stop 

criterion set at three validations if their accuracy did not 

improve. The optimal batch size value for the training 

process was 256.  

In the test process, the mean F1-score and Ch Score 

obtained in the CV process and the official results when 

submitting this model to the validation hidden data set can 

be seen in Table 1. 

Table 1. The metrics obtained using different 

combinations of leads and the 2D-CRNN model in the 

training database (F1-Score and Ch-Score-CV) and in the 

hidden database. 

Leads F1-Score 
Ch-Score 

(CV) 

Ch-Score 

Hidden 

Validation 

Data 

Un-official 

Ch-Score 

Hidden 

Test Data 

12 0.482±0.102 0.566±0.095 0.518 0.33 

6 0.465±0.158 0.548±0.183 0.494 0.33 

4 0.472±0.098 0.539±0.112 0.519 0.35 

3 0.452±0.111 0.530±0.124 0.524 0.35 

2 0.455±0.101 0.529±0.065 0.512 0.35 
 

 

  We compared these results against the CNN network 

without the BiLSTM network and obtained a Ch score of 

0.395 +/- 0.154. Therefore, we find it convenient to use the 

BiLSTM network. 

   We attribute the classification errors mainly to the 

morphological similarity between the different cardiac 

anomalies present in the data set and the class size 

difference. Initially, we used the sample replication method 

to address the problem of unbalanced classes, but this 

caused overtraining and affected the official results. So it is 

necessary to address this problem with other data 

augmentation techniques. We also hope to improve the loss 

function to be in line with Ch-Score metrics. In addition, we 

intend to extract hand-crafted features that we have 

implemented in other biosignal analyses to join them to the 

CNN network features and then bring them into the RNN 

network [9]. 

Making these adjustments to the classification 

methodology is proposed as future work presented here. 

5. Conclusion 

This paper proposes a classification model of ACs where 

the backbone uses two-dimensional representations of each 

signal. As a result, our architecture achieved an average Ch-

score of 0.34. The 2D-CRNN model presents an average 

performance respect to the results of other models presented 

in the challenge, assuming that only network parameters 

were optimized but still needs to improve the loss function 

and address the problem of unbalanced classes.  
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