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Abstract

As part of the Physionet 2021 Challenge, ”Will Two
Do? Varying Dimensions in Electrocardiography: The
PhysioNet/Computing in Cardiology Challenge 2021”, we
have developed a neural network to classify pathologies
and changes in the ECG. Our team HeartlyAI has devel-
oped a novel multitask learning based network that com-
bines classification with segmentation and extrasystole de-
tection. To obtain segmentation annotations, we developed
an annotation tool in Angular and have manually anno-
tated 1,789 ECGs from all challenge data sources for a
gold standard of P wave, QRS, and T wave segments. Each
extrasystole was annotated as supraventricular or ventric-
ular.

In the first step of our classification workflow, the ECG
is segmented using a U-Net. This segmentation is used to
calculate within-net features such as the PQ, QTc time,
and Q-Q interval. The bottleneck layer of the U-Net is
used along with the computed features as an embedding
for the classification. We have used the recent Perceiver
architecture to perform the classification of the ECG.

Our classifiers received scores of 0.40, 0.31, 0.34, 0.34,
and 0.25 (ranked 18th, 24th, 23rd, 23rd, and 27th) for the
12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the
hidden validation set with the Challenge evaluation metric.

1. Introduction

The electrocardiogram (ECG) is an important tool
in routine clinical practice for rapid diagnosis of life-
threatening diseases and monitoring during interventions.
Rapid and accurate detection of life-threatening patholo-
gies in the ECG is critical to treat them at an early stage.
This year’s PhysioNet/Computing in Cardiology Chal-
lenge aims to detect pathological changes in ECGs with
a reduced set of leads [1–3].
In total, more than 88,253 ECGs [4–9] were provided

for training purposes along with 29 clinical diagnoses, of
which 3 have been grouped together.

Our approach follows the trend of end-to-end trained
neural networks and multitask learning. Currently, the
Transformer architecture is established in more and more
areas and is replacing convolutional neural networks [10].
However, their quadratic memory requirements are chal-
lenging for long ECG sequences that can exceed half an
hour. There are several approaches to solve this, one is to
predict on shorter parts of the ECG and then merge them
back later. The second is to bring the shape within the
network into a more condensed form. We used the latter
together with the Perceiver [11], where the query vector
is separated from the input, making it have only a linear
memory complexity.

2. Methods

Our network consists of three main components. A U-
Net for segmentation of the ECG into P-wave, QRS com-
plex and T-wave and a classification head for classifica-
tion of the QRS complexes into normal beats, ventricular
and supraventricular extrasystoles. Based on this, a mod-
ule that calculates the PQ time, the Q-Q distance and the
QT distance as well as the Fridericia QTc time within the
network. These times were repeated for the corresponding
heartbeat. The bottleneck layer of the U-Net is concate-
nated together with the times and serves as an embedding
of the ECG reduced by a factor of 64 in temporal dimen-
sion. This classification branch of the network consists of
a Perceiver [11] module with iterative attention with 256
outputs and a linear layer to reduce to the 29 classes.

During preprocessing, strong signal peaks were first re-
moved and the signal interpolated if the difference be-
tween the previous and the following frame was greater
than 4mV. A Butterworth filter with a cut-off frequency
of 50Hz and an edge frequency of 60Hz was then applied.
Locally weighted scatterplot smoothing was then applied
to remove the baseline wander. Finally, the trimmed mean
was subtracted to center the signal around zero. Lastly, the
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ECG voltage was amplified when the 98 percent quantile
was below 1mV.
Since all ECGs needed the same length for the training
process, segments with a length of 4096 frames were se-
lected at random. If a manual segmentation was available
for the respective ECG, the section was selected so that it
was within the annotated 20 seconds. Shorter ECGs were
zero-padded to a length of 4096. The entire length of the
ECG was used at once for the runtime prediction. Train-
ing sequences longer than 4096 frames resulted in higher
computational cost but did not add value to training in any
metric.

To make classification easier for the network, we have
modified the diagnostics within the network. We have split
the diagnosis ”Normal sinus rhythm” into ”healthy” and
”sinus rhythm” and added a category ”pathological”. Each
ECG with ”normal sinus rhythm” got the labels ”sinus
rhythm” and ”healthy”, while all ECGs without a rhythm
diagnosis (including those not evaluated in the challenge)
got the labels ”sinus rhythm” and ”pathological”. Further-
more, we divided ”sinus bradycardia” into the diagnoses
”sinus rhythm”, ”bradycardia”, and ”pathological”.

We randomly divided all data into 10 bins and used 8
of them for pre-training and training, one for validation
and the last for testing. This also allows for 9-fold cross-
validation.

To pre-train our model, we disabled the linear projection
layer of the classification layer and trained the classifica-
tion head self-supervised with redundancy reduction [12].
The two other heads of the model were trained normally.
This guaranteed that the segmentation in the final model
was already well converged, and a good distribution for
the embedding was already learned for the classification.
The pre-training was performed on our training split of the
challenge data.

The encoder of the U-Net consists of residual blocks
with two convolutions with a filter size of five. For down-
sampling, we used max pooling with filter size and stride
of two. The number of filters was not further tuned, in Ta-
ble 1 the number of filters and the resulting temporal reduc-
tion are listed. In the decoder, the features were upscaled
with a transposed convolution, the skip connections were
concatenated, and two residual convolutions were applied.
To guarantee that the features run through the whole U-
Net, skip connections were limited to only 8 channels. Fur-
thermore, deep supervision was used to obtain a prediction
of the segmentation with reduced resolution at each level
of the U-Net. Originally, Mish [13] was used as the ac-
tivation function, but due to problems with older PyTorch
versions used on the challenge servers, it was replaced by
SiLU activation, which converged slightly worse, but did
better than ReLU.

Encoder filters Temporal reduction Decoder filters
32 1 32
64 2 24

112 4 48
192 8 64
256 16 96
320 32 128
512 64

Table 1. Number of filters in the U-Net encoder.

We used the Tversky Loss with alpha=0.7 and beta=0.3
for segmentation, Binary Crossentropy for beat classifi-
cation and Asymmetric Loss for pathology classification
with gamma neg=2, gamma pos=1 and clip=0.05. To
weight the individual loss functions, we multiplied the seg-
mentation loss by 4 and the beat classification loss by 2.

As the Madgrad [14] optimizer converged faster than
Adam [15] and Ranger [?], we used Ranger with an Asym-
metric Loss For Multi-Label Classification (ASL) [16],
which outperformed binary cross-entropy and focal loss.
The ASL was used with a negative gamma of 2 and a pos-
itive gamma of 1 which penalized false negatives more
severely than false positives during training and led to
higher recall than precision. The model was trained for
180 epochs, each epoch containing all manually segmented
ECGs as well as 12,000 additionally sampled ECGs. For
sampling, the probability for each ECG to be selected
was inversely proportional to the frequency of its positive
classes. After 40, 80, and 140 epochs, the gradient accu-
mulation was increased quadratically. We used a cyclic
learning rate scheduler with a maximum learning rate of
2e-5.

We used different augmentation techniques such as cut-
out, adding different types of noise, as well as dropout of
individual ECGs and groups of ECG channels. Due to the
long training time, we only trained one model that can han-
dle different combination of ECG channels. The overall
network architecture is illustrated in Figure 1.

An interactive visualization of the segmentation can be
tested online: https://heartly.ml
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Figure 1. Overview of the network design. The network consists of two inputs, one for the ECG and one for the age,
gender and 95 percent quantile of the ECG (amplitude). It has 3 outputs: segmentation, beat classification and pathology
classification. The bottleneck of the U-Net together with the age, sex and amplitude as well as features of the segmentation
and beat classification are used for the classification of the whole ECG.

,

3. Results

The performance on our validation split was very good
for some classes, ”Pacing Rhythm”, ”right bundle branch
block” as well as ”sinus bradycardia” and ”sinus tachycar-
dia” all achieved a F1 score of more than 0.9. However,
other classes, such as bundle branch blocks and right axis
deviation, only had an F1 score of less than 0.4. Precision
and recall were relatively balanced, with a slight emphasis
on recall.
Segmentation reached dice values of 0.77 for P waves, 0.92
for T waves, and 0.97 for QRS complexes on our valida-
tion data. Unfortunately, no metrics were calculated for
beat classification

Leads Training Validation Test Ranking
12 0.59 0.44 0.4 18

6 0.39 0.35 0.31 24
4 0.52 0.40 0.34 23
3 0.50 0.40 0.34 23
2 0.38 0.32 0.25 27

Table 2. Challenge scores calculated on a 10% test split
of the public training set, repeated scoring on the hidden
validation set, and one-time scoring on the hidden test set
as well as the ranking on the hidden test set.

4. Discussion and Conclusions

For this challenge we have developed a model that can
combine various tasks such as segmentation, beat classifi-
cation and pathology classification in a single model. Due
to a restricted computational budget, we were not able to
investigate the hyperparameter space for our model. Dur-
ing training, the model was able to overfit and correctly
classified almost all ECGs. It achieved a micro F1 Score
of 0.98 while the validation split did not improve beyond
0.82. Particularly, the results for 6 leads were worse than
the other combination due to a bug in our augmentation
step, which was only discovered after the challenge had
ended. We also found an error that caused the model to
fail in predicting the abnormal and inverted T-wave classes.
After solving the latter problem, our challenge score on
our private validation split increased to 0.65 for 12-channel
ECGs. Optimization of the hyperparameters could further
help to increase the performance score. Our team Heartly
AI was able to show that multitask learning can be suc-
cessfully applied to ECGs.
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