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Abstract 

This year’s Physionet Challenge focused on the 
question how many leads are required to develop a high-
quality ECG classification algorithm. We (team name: 
easyG) propose a stacked learning scheme combining 
conventional signal analysis, random forests and neural 
networks. Highly specialized regression random forest 
models were trained with classical ECG processing where 
features were derived for each channel of each signal. The 
outputs were then used in a neural network to achieve a 
1D regression vector, which was used to optimize 
classification thresholds.  

We present offline validation results for each lead set 
and class-specific classification scores to allow for 
insights into the question how many leads are sufficient. 
Due to technical issues, we only achieved a score of -0.46 
(all-lead) in the official leaderboard (rank 37). 

We have found that lead reduction leads to a minor loss 
in overall performance. However, variation in class-
specific performance with lead reduction exists. Some 
classes were recognized better with more leads, but in rare 
cases, the opposite was true. The results suggest that the 
optimal number of used channels is depending on the 
setting and goals of the classification. 

 
 

1. Introduction 

“Will two do?” is the enticing research question of the 
2021 Physionet Challenge [1]. This way of approaching a 
machine learning problem goes against the current dogma 
of modern artificial intelligence applications, where ever-
increasing amounts of data are collected to achieve 
improved results. Condensing and reducing information to 
the utmost essential elements could help to alleviate the 
omnipresent issue of computational resource limitations.  

While it is unlikely, that automated ECG classification 

algorithms will replace health care professions entirely, 
applying them can offer a range of benefits. First and 
foremost, such classifiers could provide medical personnel 
with a fast, initial assessment of a patient’s health 
condition. In a further scenario, they could be used in long-
term observation to warn patients and doctors if a recurring 
arrhythmia sets in. The fact that this challenge aims at 
reducing the number of required channels which makes the 
telehealth setting with wearable ECG recording equipment 
also a realistic example. 

During the 2021 Physionet Challenge, the provided 
training data (n = 88.253) was comprised of 12-lead ECG 
data from different and heterogeneous sources. The hidden 
test set (n = 16.000) consisted of samples from these and 
additional undisclosed sources.  

Past challenges [2], as well as a multitude of academic 
publications, have shown that both conventional machine 
learning approaches using feature engineering [3] as well 
as novel deep learning methods [4, 5] can achieve high-
quality classification of ECG pathologies.  

The combination of both machine learning paradigms 
seems appealing. In the 2020 challenge, a high-placed team 
(“between a ROC and a heart place”) also combined deep 
learning residual networks with subjects’ meta-features 
such as age and gender [6]. Our team followed a similar 
approach last year [7].  

In contrast to the parallel use of conventional and deep 
learning as in the examples described above, this paper 
describes a combination of these paradigms in sequence.  

 
2. Methods 

We present a stacked feature engineering and modelling 
process that was comprised of four steps: 1) feature 
extraction, 2) random forest modelling, 3) neural network 
for channel mapping and 4) determining optimal 
classification thresholds.  
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2.1. Feature extraction 

We based our feature engineering algorithm on our past 
signal analysis [8]. The features were calculated in both, 
time-domain and frequency-domain and can be 
categorized in different groups: Averaged beat, single beat, 
atrial signal properties, rhythm related features, general 
signal properties, QRS related signals and meta-
parameters derived as combinations of other features. 

For this work, additional features related to the heart 
axis concept were calculated. Since leads I and II are part 
of all channel subsets, these two were used as the axes on 
which the averaged heartbeats were projected in the frontal 
plane. From the resulting vector loop, a total of 10 
additional parameters were calculated, i.e. mean values of 
the projections to the X and Y coordinates, the radius and 
angle of these values, the same procedures applied to the 
coordinates of the centre of gravity of the loop and, finally, 
the area and the perimeter of the loop. 

Experiments on the impact of adding this set of 
additional parameters revealed that they were able to 
significantly increase the predictive power of models based 
on ECG analysis features. 

  
2.2. Stacked learning scheme 

Our three-stage modelling approach is depicted in 
Figure 1 below and is further explained in the following 
sections. 

 

 

Figure 1. Schematic overview of data splitting and 
modelling scheme 

 
2.2.1. Random Forest models 

The derived feature set was split into two parts in a 
50:50 ratio. One portion was used to fit random forest 
models. Highly specialized bagged regression ensembles 
with 64 trees each were created for each available data 
source (S), channel (C) and scored diagnosis (D). This 
resulted in S x C x D random forest models, which were 
used to predict the remaining 50% of the feature set, 

resulting in S x C x D probability scores for each channel 
of each signal to belong to each scored diagnosis. Random 
forest models were trained for each channel with the 12-
lead set, but not retrained in different lead set 
combinations. Models were saved individually and queried 
later upon request.   

 
2.2.2.  Neural Network channel mapping 

The regression results of the random forests of each 
signal had two dimensions [C, D] (No. of channels C, No. 
of diagnoses D). A multilayer perceptron (MLP) was 
applied to condense this 2D regression matrix to the 
required 1D vector of dimension [1, D]. The MLP had 
three fully-connected layers (units: 256, 128, 64) with a 
block of batch-normalization, ReLU activation and 
dropout (rates: 0.3, 0.25, 0.2) in between each layer. The 
final layer was a sigmoid-activated fully connected 
regression layer. As fully connected layers require 1D 
input, the 2D regression matrix was reshaped into a 1D 
vector of dimension [1, C x D] in order to be used as 
training data for the neural network. One neural network 
model was trained for each lead set. The models were 
trained for 50 epochs on 85% of the 50% (absolute portion 
42.5%) portion of the feature set. The remaining 15% 
(absolute portion 7.5%) were used to determine 
classification thresholds. The Adam optimizer [9] with an 
initial learning rate of 0.001 was used. Learning rate was 
decayed by the factor of 0.8 every 5 epochs. 

 
2.2.3. Optimizing classification thresholds 

To achieve binary classification results for each 
diagnosis, thresholds needed to be applied to the regression 
vector produced by the neural network. A grid search was 
applied to optimize individual, diagnosis-specific 
thresholds. The search iterated over each available 
diagnosis, setting an increasing threshold starting from 0 in 
0.01 steps until 1, while setting all other, not yet optimized 
thresholds to 0.5. The threshold value that achieved the 
best challenge metric was recorded and fixed to that for the 
remaining iterations. In that way, all diagnoses were 
assigned their individual, best-performing optimization 
threshold. Threshold optimization was executed for each 
lead set individually. 

 
2.3. Querying of models 

Since highly specialized models were developed in this 
stacked approach, each test set was predicted by the 
respective model (e.g. test samples from CPSC cohort 
were classified with the CPSC-trained models). Cohorts 
were identified by the first letter of their filename. 
However, this was not applicable for test samples of 
undisclosed sources as no models could be trained for them 
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in advance. In these cases, the models which have been 
developed with the most positive cases for each available 
diagnosis were selected. The rationale behind this 
approach was, that models that have been trained with 
many examples of that diagnosis are likely to hold the most 
knowledge of that class and thus are best suited to classify 
this specific disease.   

 
3. Results 

All results presented in the following chapters are 
achieved with testing on 1% of each dataset (random 
sampling) and 100% of the St. Petersburg INCART set (n 
= 962). The remaining samples were used for training (n = 
87.291). Results for different lead-sets are seen in Table 1. 

 
3.1. Lead set results 

Table 1. Results (F-score, AUROC and challenge metric 
CM) of the 5 different lead sets on offline data. Final 
column notes the number of classes with the highest 
achieved per-class AUROC score for each lead set. 

Leads F-score AUROC CM 
Best-scoring 

classes  
12-lead  0.389 0.904 0.683 12 
6-lead 0.386 0.903 0.669 5 
4-lead 0.365 0.896 0.669 5 
3-lead 0.375 0.890 0.658 8 
2-lead 0.360 0.888 0.655 2 

 
3.2. Class-specific results 

 
Figure 2. Class-specific AUROC results. The shade of 
colour indicates the number of channels. 

Overall, 12-lead ECG classification provided the 
highest score in 12 classes, the 6-lead and 4-lead sets in 5, 
3-lead classification in 8 and 2-lead classification in 2 
classes. This is summarized in Table 1. 

In the official leaderboard, a score of -0.46 (all-lead) on 
the hidden test set was achieved, which constitutes rank 37. 
Detailed results about online scores are shown in  Table 2. 
Due to technical difficulties, we were ultimately unable to 
submit our methods completely and thus we present offline 
results. 

Table 2. Detailed results of offline, validation, test scores 
(challenge metric) and achieved rank in the test set.  

Leads Offline Validation Test Rank 
12-lead  0.68 -0.04 -0.23 36 
6-lead 0.67 -0.32 -0.53 37 
4-lead 0.67 -0.40 -0.62 37 
3-lead 0.66 -0.33 -0.55 38 
2-lead 0.66 -0.40 -0.60 38 

 
4. Discussion 

Due to the fact, that unfortunately no valid submission 
was realized, all presented results are achieved with offline 
training data, which constitutes the main limitation of our 
work (our last submissions were successfully trained 
remotely, but ran into an error during testing, most 
probably only within the reduced lead sets). Therefore, the 
main focus of this work is to highlight an innovative 
methodology.  

The feature engineering algorithm was mainly derived 
from previous work of our research group [8]. Originally, 
it was developed for single-lead ECG signals during the 
PhysioNet Challenge 2017 and received the second-best 
score against the hidden test set in the Physiological 
Measurement Focus Issue follow-up 2017. For this year's 
challenge, this algorithm was applied to all 12 available 
channels, which ultimately resulted in a large number of 
features (447 per channel, 5.364 in total). Many features 
were severely correlated. Some features provided hardly 
any benefits or possibly even harmed overall performance. 
As a next step, we will explore the influence of different 
approaches for feature selection on the results. 

 
4.1. Data splitting ratio 

As stated in Chapter 2.2.1, data was split into two 
equally large folds so that 50% of data was used for both 
the random forest training and the subsequent neural 
network training. Different ratios should be considered in 
future experiments. For example, it can be hypothesized 
that the random forest models are responsible for the 
majority of modelling expressive power. It could be argued 
that the random forest models should be provided with 
more training data (e.g. 75%) to produce better random 
forest models since they constitute the core of the 
classification scheme. However, it is widely accepted, that 
neural networks need notably more training data 
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(compared to random forests), which justifies the 50:50 
split. Further analysis of different split ratios could 
illuminate this question in the future. 

 
4.2. Test data selection 

For this work, 1% of all datasets and 100% of the 
INCART dataset was used as test data. This was done to 
simulate an undisclosed dataset that is inherently different 
(different sampling rate, different lengths, etc.) the datasets 
used in training. We hoped that this would provide insight 
into how the classification scheme would perform in the 
challenge’s final test. Ultimately however, the INCART 
dataset is extremely small (n = 74) and might not be as 
representative as assumed. Overall, a larger set of test data 
would give more details about the overall performance and 
should be aimed for in future improvements. 

 
4.3. Lead set results 

When examining Figure 2 it becomes obvious, that 
disparities in classes existed. Most of the classes that 
produced high AUROC scores are consistent among 
different lead sets. A notable exception was right axis 
deviation (RAD), which interestingly suffered heavily 
from using all 12 channels. It appears as if the 5 channels 
used in the 12-lead analysis only (V1, V3, V4, V5 and V6) 
were providing misleading features.  

Other classes however did clearly benefit from the full 
12-ECG. For example, right bundle branch blocks (RBBB) 
were distinctly better classified if all channels were 
available. Both T wave-specific classes, T wave inversion 
(TInv), T wave abnormalities (TAb), as well as prolonged 
PR interval (LPR), nonspecific intraventricular conduction 
disorders (NSIVCB) and low QRS voltages (LQRSV) all 
clearly benefitted from using all 12 ECG leads.  

Left branch bundle blocks (LBBB) constituted a curious 
case: 3-lead classification provided the best results, 
followed by 12-lead with a distinct margin. A similar 
behaviour was found in the poor R wave progression class 
(PRWP). Further research is needed to provide a 
reasonable explanation for this phenomenon.  

 
4.4. “Will two do?” 

To answer the question of this challenge - “will two 
do?” - the scenario matters. Our results indicate, that using 
only two ECG channels is inferior to using the full 12-lead 
ECG although the margins are small (see Table 1). We 
have found that lead requirements differ between classes. 
Even though 2-lead classification provided the highest 
scores only in 2 classes, the main sentiment of lead 
reduction should not be rejected as 3-lead classification 
proved to be highly effective (see Table 1).  

In our opinion, the answer is not entirely conclusive. 

While overall classification does not suffer from lead 
reduction as much, specific classes exist, that benefit from 
using more information (i.e. more leads). The found results 
suggest that the selection and number of channels should 
be adapted to the specific application of automated ECG 
classification.  

Knowledge gathered by participants of this challenge 
could provide clinicians a better insight into their 
requirement for lead selection. This could lead to a more 
selective and condensed recording of medical data. This is 
not only more convenient for patients but also in 
accordance with the EU’s General Data Protection 
Regulation that requires to reduce the quantity of gathered 
personal data to a necessary minimum. 
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