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Abstract

In this work, we present a machine learning approach
that is able to classify 30 cardiac abnormalities from an
arbitrary number of electrocardiogram (ECG) leads. Fea-
tures extracted by a deep convolutional neural network are
combined with hand-crafted features (demographic, mor-
phological, and heart rate variability metrics) and fed into
a multilayer perceptron. We employ an Asymmetric Loss
(ASL) function, which enables the model to focus on hard
but under-represented samples. To mitigate the issue of
ground-truth mislabeling and to provide robustness, we in-
vestigate the use of a self-learning label correction method
that iteratively estimates correct labels during training.
Our team SMS+1 placed 7th on the unseen test set, with an
overall challenge score of 0.51, and 0.52, 0.45, 0.50, 0.50,
and 0.49 for twelve-, six-, four-, three-, and two-lead, re-
spectively. Our model maintains similar diagnostic poten-
tial on both standard twelve-lead ECGs and reduced-lead
ECGs.

1. Introduction

Detecting cardiac abnormalities as early as possible is
a crucial task in which automated electrocardiogram sig-
nal interpretation plays an important role. In recent years,
Deep Learning (DL) has been widely applied in many
areas, including healthcare, and has shown high accu-
racy in ECG arrhythmia classification [1]. The most suc-
cessful types of DL models are restricted Boltzmann ma-
chines, stacked autoencoder, Convolutional Neural Net-
works (CNNs), and Deep Belief Networks [2]. Compared
to traditional approaches, DL-based approaches can au-
tomatically learn informative feature representations [1].
However, it can also be beneficial to incorporate expert
knowledge, represented by hand-crafted features [3, 4].

All authors contributed equally to this work.

The 2020 PhysioNet/CinC Challenge focused on classify-
ing 27 cardiac abnormalities from twelve-lead ECG, the
most standard diagnosis screening system for a variety of
cardiac arrhythmias [5]. This year’s challenge focuses on
the ability to achieve similar multi-class classification per-
formance with a reduced set of leads, motivated by the lim-
ited accessibility of twelve-lead ECG devices. Most severe
diseases occur rarely but are very important to be detected
by the model, and high-data quality acquisition including
expert annotations are difficult to acquire. Therefore, two
of the biggest challenges when applying DL to ECG data
are the imbalance and noisy nature of the labels arising
from incorrectly labeled recordings [4].

2. Methods

In this work, we present a deep learning architecture for
multi-label classification of 30 ECG findings. Our net-
work combines hand-crafted features (’wide’) with ECG
features extracted via a neural network (’deep’). For en-
coding deep features, we employ a deep neural architec-
ture built by interleaving nonlinear convolutional blocks,
which allow modeling patterns at different time scales. We
employed an Asymmetric Loss (ASL) function, which en-
ables the model to focus on hard, but under-represented,
samples. A final set of fully connected layers combine
both the ‘wide’ and ‘deep’ features to produce multilabel
classifications of ECG findings. To mitigate the issue of
ground-truth mislabeling and to provide robustness, we in-
vestigate the use of a self-learning label correction method
that does not require a fully correctly labeled dataset, but
iteratively estimates corrected labels during training. The
model architecture is illustrated in Figure 1.

2.1. Dataset

The 2021 PhysioNet/CinC Challenge datasets include
annotated twelve-lead ECG recordings from six different
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Figure 1. Architecture of the model: Training data is first resampled before it is passed to a 1D CNN and combined
with hand-crafted features. The feature set obtained from the 1D CNN is also used as an input to a label correction phase
that iteratively estimates corrected labels during training by identifying prototypes of every class that are likely labeled
correctly. The output of the label correction is then combined with the output after the convolution step.

sources [6]. These datasets include over 100,000 twelve-
lead ECG recordings with over 88,000 ECGs shared pub-
licly as training data. An analysis of the demographic data
shows a low percentage of missing data (0.27% for age
followed by 0.03% for sex). Age has negative skewness of
-0.74 with a mean of 59.23 (std. 18.39). Sex is balanced
between males (55%) and females (45%). The durations
of the recordings range from a minimum of 5 seconds to
a maximum of 30 minutes, but 92% of recordings are 10
seconds long. The datasets have unbalanced classes. For
example, sinus rhythm represents 22% of the labels while
complete left bundle branch block appears only in 0.16%
of the recordings.

2.2. Classification architecture

2.2.1. Extraction of hand-crafted ECG fea-
tures

As recordings from separate hospitals and devices can
have different sampling rates, we first resample each
recording to 250 Hz. Then we apply an finite impulse re-
sponse (FIR) bandpass filter between 3 - 45 Hz. We extract
a set of features per lead, including morphological features
(P and T wave amplitude, PR interval, etc.) [7], heart rate
variability features in time, frequency, and non-linear do-
mains (RMSSD, pNN60, spectral power density pertaining
to low and high frequency band, T and P wave permutation
and approximation entropy, etc.) [8], and a subset of fea-
tures used by the 2020 PhysioNet Challenge winners [3].
The high prevalence (92%) of ten seconds long recordings

influenced the choice of the selected hand-crafted features.
We also include demographic features (age and gender) as
shown in Table 1. Collectively, these features are concate-
nated with the learned outputs from the “Deep” portion of
the model (c.f. chapter 2.2.2).

Table 1. Hand-crafted features complementing the 1D-
CNN used in the challenge.

Hand-crafted features
Demographic Age, Sex
Morphological[7] QRS/P and QRS/T duration

PR interval, BPM
P and T wave amplitude

2020 PhysioNet Heart rate, RR interval
challenge winners[3] P and T wave approximate

entropy (median)
Heart rate variability HRV time domain
(HRV)[8] (14 features)

HRV frequency domain
(9 features)
HRV non linear domain
(29 features)

2.2.2. 1D-CNN

The deep component of our model consists of a series
of convolution operations and two fully connected feed-
forward networks. The one-dimensional convolution oper-
ations are applied to the original ECG waveform segments
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to extract a latent space representation of the signals. The
dimension settings of the layers are listed in Table 2 . The
stride and kernel of the max-pooling layers after each con-
volution are set to four. Batch normalization is also applied
after each convolution. A one-dimensional adaptive max-
pooling is performed to the output before it is combined
with the hand-crafted features for the two fully convolu-
tion operations.

Table 2. Deep Learning model settings.

Layer In Kernel Stride/Padding Out
CNN 1 leads 5 1/2 16
CNN 2 16 5 1/2 32
CNN 3 32 5 1/2 64
CNN 4 64 5 1/2 128
CNN 5 128 5 1/2 256
FC 1 256 + feat 512
FC 2 512 30

2.2.3. Asymmetric loss function

A trained model with imbalanced data may make pre-
dictions with high precision and low recall, being severely
biased towards the more represented classes. In medical
applications, where it is important to avoid false nega-
tives, this is an issue. We employed an Asymmetric Loss
(ASL) for multi-label classification [9], which enables the
model to focus on hard, but under-represented samples,
and also deals with potential mislabeled samples. This loss
function contains two complementary asymmetric mecha-
nisms that work differently on well-represented and under-
represented samples and dynamically adjust the asymme-
try levels throughout the training. The ASL uses two fo-
cusing hyperparameters to modify the contribution of easy
samples to the loss function (γ+, γ−). In our work we set
γ+ = 1 and γ− = 3.

2.3. Implementation Details

During model training, we monitor the average Chal-
lenge score and use early stopping when the validation
Challenge score stops improving for 4 epochs. This ap-
proach is used for both, the first epochs without label cor-
rection, and when the label correction phase is performed
after the model has been pre-trained. We use an Adam
optimizer (β1 = 0.9, β2 = 0.999 and ε = 10−9) with a
learning rate of 0.001. The batch size is set to 10. The com-
plete model consists of 382.412 trainable parameters and it
is trained on the 2021 PhysioNet/CinC challenge datasets
and no other external data sources.

2.4. Self-learning label correction

In a real-world dataset, most of the ”ground truth an-
notations” come from human experts, which are subjec-
tive, mistake-prone, and introduce bias in the data. Learn-
ing from noisy labels reduces model performance and it
is still a challenge in DL. Following the work from [10],
we include a self-learning label correction module to our
model. This approach doesn’t require a fully correctly la-
beled dataset as it iteratively estimates corrected labels dur-
ing training. The main idea is to identify prototypes from
the set of samples of each class that have a high chance
of being correctly labeled. This is done once the model
has already been trained with the original noisy dataset,
so network features can be extracted from each sample to
identify prototypes based on similarity and density mea-
sures. Each sample is then compared to the prototypes of
each class and a corrected label is assigned if needed.

2.5. Evaluation

We evaluate the performance of the proposed method
based on the ”challenge score”, as described in [6]. An
ablation study is performed to investigate the effect of the
ASL, hand-crafted features and, the LC phase added to the
1D-CNN. For this purpose, the dataset is split into train,
validation, and test sets (60%, 20%, 20%).

3. Results

The results of the ablation study aimed at investigating
the effect of each of the additional components added to
the 1D-CNN are reported in Table. 3. The largest drop in
performance occurs when removing the ASL component
from the model reducing the challenge score by 14%. Re-
moving the features has a marginal effect on the perfor-
mance with a 1% drop in the 12, 4, and 2 lead local test-
ings. A small increase in performance can be appreciated
for the 6 and 3 lead combinations.

The label correction phase decreases the performance
from 7%, for the 12 lead, up to 14% for the 2 lead.

When tested on the hidden validation set, we observe
that including the features leads to a small, but consistent
increase in performance. The model without label correc-
tion achieves a challenge score of 0.57, 0.58, 0.57, 0.56,
and 0.57 for twelve, six, four, three, and two-leads, respec-
tively. By adding the label correction the score dropped by
13-11%, a bigger decrease than in the local testing.

Finally, the best performing model on the validation test
placed 7th in the challenge when evaluated on the test data,
with an overall challenge score of 0.51, and 0.52, 0.45,
0.50, 0.50, and 0.49 for twelve-, six-, four-,three-, and two-
lead, respectively. On the undisclosed data-set, an overall
score of 0.42 would place our method 4th.

Page 3



Table 3. Local challenge score obtained for the ablation
study on the train set, from the full model, model without
hand-crafted features and model without label correction.

Challenge Score
Model 12 lead 6 lead 4 lead 3 lead 2 lead
Full 0.66 0.63 0.65 0.60 0.65
w/o Feat. 0.65 0.65 0.64 0.64 0.64
w/o ASL 0.52 0.52 0.52 0.51 0.51
Including LC Phase
Full 0.59 0.53 0.53 0.54 0.51
w/o Feat. 0.59 0.53 0.53 0.54 0.51

Table 4. Challenge scores for our final selected entry
(team SMS+1) using validation on the public training set,
scoring on the hidden validation set, and one-time scoring
on the hidden test set as well as the ranking on the hidden
test set.

Leads Training Validation Test Ranking
12 0.66 0.57 0.52 6

6 0.63 0.55 0.45 16
4 0.65 0.57 0.50 7
3 0.60 0.56 0.50 8
2 0.65 0.57 0.49 8

4. Discussion and Conclusion

Results clearly show that the asymmetric loss was most
crucial to the performance of our model. We believe this
is because the ASL introduces different weights for false
positives and false negatives, which remedies the imbal-
ance of positive and negative labels.

The added hand-crafted features slightly improve the
model performance, we believe that this is due to the fact
that some features, such as the entropy features, are likely
hard to compute for a convolutional network.

In both, the ablation study and the official submission,
there was no improvement in the results when perform-
ing the label correction phase. We assume that the reason
is that in the original work the labels were much noisier
[10], leading to more aggressive label-correction parame-
ters. Additionally, the authors of [10] were dealing with
a single-label classification problem, where relabeling was
deciding on which class a label belongs to. For the multi-
label classification problem considered in this work, the
number of possible labels is exponential in the number
of classes, making the task of finding a new label much
harder, due to the search space being larger. Further inves-
tigation is therefore necessary.

To conclude, the best performance across all leads is
achieved by the 1D-CNN in combination with the ASL
and the manually handcrafted features. Our model shows

a consistent ability in detecting a variety of cardiac abnor-
malities, on standard 12 lead ECGs as well as on various
reduced-lead ECGs. Two will do!
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