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Abstract

Over the last decade, AI has shown its feasibility in clas-
sifying heart-related diagnoses from ECGs. Earlier studies
have mainly focused on 12 and 2-lead ECGs, but we aim
to classify 26 different diagnoses based on 12, 6, 4, 3, and
2-lead ECGs in this study.

We trained a supervised model on a dataset containing
88 253 ECGs with 26 different diagnoses used as ground
truth. The training and classification steps can be sepa-
rated into three parts. (1) Pan Tompkins algorithm was
used to find peaks and calculate the average heart rate.
(2) The average heart rate and the Fourier transformed
ECG signal was used to train convolutional neural net-
works (CNN) system that classified the ECGs with regular
or irregular rhythms. 9 out of 26 classes were classified
in this step. (3) Finally, CNN models in a classifier chain
were trained to classify the remaining 17 diagnoses. The
classification results from step 2 and the raw ECG signal
were used as input to the classifier chain in step 3.

Our team, CardiOUS, achieved a PhysioNet Challenge
score of -0.63 for all sets of leads on the hidden test set.
Based on the test score, our team placed at 38th out of 39
teams in the official ranking.

1. Introduction

Cardiovascular diseases (CVDs) are one of the leading
causes of death globally, taking an estimated 17.9 million
lives each year according to numbers from World Health
Organization (WHO, 2016). Better diagnostics may lead
to earlier detection of CVDs and may also have an impact
on reducing the severity of the disease, and the ECG is
one of the most used diagnostic tools for detecting heart
diseases [1]. Taking an ECG is a non-invasive method,
and the rapid development in wearable technology has also
made it available on everyone’s wrist. On the other hand,
misinterpretations of the ECG are still done frequently by
the built-in automatic interpretation software, and doctors
often have to read over the raw ECGs [2]. This error is

both time-consuming and requires a high degree of exper-
tise by the doctors [3]. Therefore, it has great potential
in improving the ECG interpretation algorithms, both to
streamline the interpretation process and to detect patterns
that doctors cannot see on the ECG.

The last decade has shown a rapid advancement in using
deep learning and convolutional neural networks to find
patterns in images and signals. The same also applies to
ECG, where a review from 2021 found 31 different ap-
plications of using deep learning to detect different CVDs
from ECGs [4]. Some of the most surprising findings have
shown that deep learning can detect persons’ age and gen-
der [5], and detect silent atrial fibrillation in patients only
using their ECGs [6]. Despite the exciting findings and
outstanding results in classifying cardiac abnormalities, it
is also shown that many of these studies use small datasets
with few classes [4]. In addition, many studies have been
conducted on single set of ECG leads. To our extent of
knowledge, no single study has compared the performance
of a classifier on a different number of ECG leads.

This study shows how classifier chain based CNN-
models perform on 12, 6, 4, 3, and 2-lead ECG. The ar-
chitecture that we use is inspired by a cardiologist’s ECG
interpretation process. Our architecture first calculates the
mean heart rate of a recording, then it determines the ECG
rhythm to classify nine more common diagnoses that can
be distinguished by its heart rate and rhythm first. Finally,
it classifies the other 17 diagnoses in the classifier chain.

2. Methods

2.1. Data

In this study, we used a dataset containing 88 253 ECG
recordings with corresponding information files to train
our models. The dataset originates from six different coun-
tries and three different continents [7–13]. The informa-
tion files described the recording, patient attributes, and
the diagnosis associated with the patient’s ECG. The su-
pervised models were using 26 out of the 133 diagnoses
present in the dataset as labels.
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To feed the labels to the model during training, we one-
hot encoded the diagnoses, such that each ECG record-
ing had a corresponding 26-bit long array of ones or zeros.
More than one diagnosis could be associated with the same
ECG, making it a multi-label classification problem. In the
whole training set, there were 2745 different combinations
of diagnoses based on the 26 diagnoses.

2.2. Preprocessing

The ECG recordings in the training dataset were differ-
ent in length and had different sampling frequencies. To be
able to feed the ECG signals to the CNN models, we used
two strategies:
1. Fourier transforms the ECG signal to represent the en-
tire signal as a magnitude of the different frequencies be-
tween 0 and 100 Hz. The Fourier transformed signal was
then down or upsampled to a length of 5000 samples.
2. Upsample or downsample the raw ECG signal to 500
Hz and then pad or truncate the signal to a length of 5000
samples, which is equivalent to 10 seconds. Resampled
recordings with length n > 5000 samples were truncated
to the first 5000 samples. While, those of length n < 5000
were padded with zeros until they reach 5000 samples.

2.3. Model

2.3.1. Heart rate detection

The first step in the model architecture was to detect
heart rate. This detection was done by finding the R-peaks
using the Pan-Tompkins algorithm on the raw ECG signal
at its full-length [14]. The time interval between the peaks
was then used to calculate the mean heart rate.

2.3.2. Rhythm classification

A Fourier transformed ECG signal and the mean heart
rate were used as input in the rhythm classification. This
classification was done in two steps.
1. Categorize the rhythm as regular or irregular.
2. Classify the ECG with diagnoses considered as regular
or irregular based on the previous categorization.

In the training of the rhythm categorizer, ECGs la-
beled with atrial flutter, pacing rhythm, sinus rhythm, si-
nus bradycardia, sinus tachycardia, and sinus arrhythmia
were extracted from the dataset and categorized as regular
rhythms. In contrast, ECGs labeled with atrial fibrillation,
ventricular premature beats/premature ventricular con-
tractions, and supraventricular premature beats/premature
atrial contraction were extracted from the dataset and cat-
egorized as irregular rhythms. If an ECG was categorized
as a regular rhythm in step 1, it was then classified into
one or more of the regular rhythms in step 2, and then all

irregular rhythms were classified as false. If an ECG was
categorized as an irregular rhythm in step 1, it was then
classified into one or more of the irregular rhythms in step
2, and then all regular rhythms were classified as false.

2.3.3. Classifier chain

The rhythm classifier classified 9 out of 26 classes, and
the remaining 17 classes were classified using a classifier
chain [15]. The classifier chain trained one classifier for
each of the 17 classes ordered in the chain. The first classi-
fier in the chain was trained on the 5000 samples long ECG
signals and nine labels from the rhythm classifier. The n-
th classifier in the chain was trained on the 5000 samples
long ECG signals, 9 labels from the rhythm classifier, and
the n − 1 predictions from the previous classifiers in the
chain. This process implies that the order of the classes is
not indifferent since more data is given to the last model in
the chain than the first. The 17 diagnoses were classified in
the following order by the classifier chain: bundle branch
block, bradycardia, 1st-degree av block, incomplete right
bundle branch block, left axis deviation, left anterior fas-
cicular block, left bundle branch block, low qrs voltages,
nonspecific intraventricular conduction disorder, poor R
wave Progression, prolonged pr interval, prolonged qt in-
terval, qwave abnormal, right axis deviation, right bundle
branch block, t wave abnormal, t wave inversion.

2.4. CNN architecture and model
parameters

The CNN model used in both the rhythm classification
and the classifier chain is an Encoder [16]. This model
architecture showed its feasibility in classifying ECG in
PhysioNet/CinC Challenge 2020 [17]. The final layer of
this CNN model used sigmoid activation and binary cross-
entropy as the loss function1.

2.5. Model validation and
hyperparameters

The models were trained and validated on the training
dataset using 10-fold CV on both 12, 6, 4, 3, and 2-lead
ECG recordings, with a random seed = 42 to make the
folds equal and the results reproducible. A stratified CV
was used to split the data such that the distribution of diag-
noses was similar in both the train and validation data.

All CNN models were trained using Adam optimizer, a
learning rate of 0.0001, and a batch size of 30. All rhythm
models were trained for 10 epochs, and all models in the
classifier chain were trained for 5 epochs. The order of the
data, feed to the model, were shuffled after each epoch.

1All code developed in this study are available here: https://gith
ub.com/CardiOUS/PhysioNetChallenge2021-CNN
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3. Results

Table 1 shows the Challenge score obtained on the train-
ing, validation and test set using the 12, 6, 4, 3 and 2-lead
model.

Model Training Validation Test Rangking
12-lead 0.49± 0.01 -0.40 -0.63 39
6-lead 0.44± 0.03 -0.40 -0.63 39
4-lead 0.43± 0.02 -0.40 -0.63 39
3-lead 0.43± 0.02 -0.40 -0.60 38
2-lead 0.42± 0.01 -0.40 -0.63 39

Table 1. Scores obtained by 12, 6, 4, 3, 2-lead models on
the training, validation and test set. The training scores are
reported as 10-fold cross validation scores, the validation
and test score on the other hand is a single score.

Figure 1 shows a detailed comparison of the 12, 6, 4, 3,
and 2-lead models using 10-fold CV on the training set.

Figure 1. The boxplots show the PhysioNet Challenge
score obtained by the 12, 6, 4, 3, and 2-lead models on the
validation split from the 10-folded CV.

The model validation on the training set was done in
Google Colab Pro with 16.28 GB GPU and 25.46 GB
RAM available. The runtime for the 12, 6, 4, 3, and 2-
lead models are presented in table 2.

Model Runtime (minutes pr CV fold)
12-lead 913± 82
6-lead 896± 90
4-lead 832± 77
3-lead 780± 75
2-lead 755± 81

Table 2. The measured runtime while training 12, 6, 4,
3, 2-lead models on one CV fold represented as mean and
standard deviation calculated from all 10 folds

4. Discussion and conclusion

In this study, we developed a model inspired by the ECG
interpretation procedure of a cardiologist. The model is
based on a heart rate calculation, a rhythm classifier, and a
classifier chain used to classify 26 different diagnoses.

Our results on the hidden validation and test set are
poor compared to the scores on the training set. Unfor-
tunately, we were not able to run our best model on the
hidden validation and test set due to the extensive runtime
that exceeded the maximum runtime allowed by the Phys-
ioNet/CinC organizers. Instead our reported scores on the
validation and and test set are from a submission where the
docker image failed to load the right packages and then ran
without predicting anything.

From figure 1 we see that the 12-lead model is signif-
icantly better than the reduced amount of leads models
measured in terms of Challenge score on the training set.

Further, we see from the results in figure 2 that sinus
rhythm (n = 28971), left axis deviation (n = 7631), and t
wave abnormal (n = 11716) show slightly lower accuracy
than the other classes. A striking observation is that these
diagnoses also have some of the highest prevalences in the
dataset. A possible explanation for this is that the accu-
racy score has some drawbacks when scoring imbalanced
datasets like the one present in this study. The accuracy
score tends to favor the classes with low prevalence and
give a relatively lower score to the balanced classes [18].

We padded and truncated the signals to 5000 samples
necessary to get the same dimensions on the data, which is
a premise to feed the signal to a normal CNN model. The
disadvantage of this method is that important information
might be clipped off from the ECG and thus not used by
the model. On the other hand, the heart rate calculation and
the rhythm classifier used features from the whole ECG.

The hyperparameters used in this model were selected
experimentally. Further experiments with more compu-
tational resources and a greater focus on hyperparameter
tuning will probably increase the model’s accuracy. On the
other hand, it’s likely that the model presented in this study
is highly generalizable since it has not been overfitted due
to hyperparameter tuning.

Another source of limitation of this study is that the or-
der of the 17 classes in the classifier chain was picked ran-
domly. In future studies, this could be tuned by finding the
optimal order of classification in the classifier chain.

Despite the problems we had running the model on the
validation and test set we found, from the training set, that
the 12-lead model seems to perform better than the models
with a reduced amount of leads in this study. On the other
hand, there was no significant difference between the 6,
4, 3, and 2-lead models. This may have implications for
future studies of wearable ECGs and Holter ECGs.
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Figure 2. Accuracy in all 26 classes obtained from the first fold of the dataset using the 12, 6, 4, 3 and 2-lead model. NICD
is short for nonspecific intraventricular conduction disorder and IRBBB is short for incomplete right bundle branch block.
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