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Abstract

Globally, heart disease has been the leading cause of
death for more than two decades. There is a need to de-
velop intelligent architectures to handle a variety of real
life clinical scenarios when a 12-lead ECG is not a viable
option. We propose a method using wide and deep CNN ar-
chitectures to classify cardiac abnormalities from 12, 6, 4,
3, and 2 leads ECGs. These five networks were created for
the PhysioNet/CinC Challenge 2021, by the Biomedic2ai
team.

ECG signals were down-sampled to 100Hz and parti-
tioned with 5-second windows using a sliding 4-second
overlap. A one-dimensional deep CNN (I1D-dCNN) mod-
ule was used to preserve sequentially related features em-
bedded in the signals. A feature extraction module was
added to the ID-dCNN, creating a ‘wide and deep modular
network’. This framework allows the addition or removal
of modules to optimize classification models.

We achieved test scores of 0.36, 0.30, 0.31, 0.29, and
0.34 (ranked 23rd, 26th, 26th, 27th, and 22nd out of 39
officially ranked teams) for 12, 6, 4, 3, and 2 leads, respec-
tively, on the hidden test set provided by the challenge.

Our model demonstrates potential with the wide modu-
lar network. The framework also provides the flexibility to
integrate clinical knowledge in the future modules to im-
prove the overall classification performance.

1. Introduction

Cardiovascular diseases (CVDs) are responsible for
one-third of the deaths globally [1]]. Early diagnosis can be
life-saving, with favourable prognosis. Electrocardiogram
(ECG) helps screen and diagnose these CVDs by allow-
ing visualization of aberrant conduction in the heart [[1,[2].
The 12-lead ECG is a noninvasive cardiovascular diagnos-
tic tool used worldwide. In recent years, developments in
deep learning methods have improved the ability of au-
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tomated systems to detect CVDs from the ECG signals.
However, these automated systems lack generalizability
due to the absence of sufficient high-quality data, and stan-
dardization of performance metrics of classification algo-
rithms [3]]. Moreover, the models are often black box sys-
tems that seldom explain the decision criterion or provide
human interpretable context for their decision, which lim-
its the trustworthiness of such systems.

The PhysioNet/CinC Challenge 2021 focuses on devel-
oping automated, open-source methods to classify CVDs
from multi-lead ECGs [4H6]. Our entry in the Challenge
used a modular approach, combining a 1D-dCNN and a
perceptron as individual modules to build a wide and deep
model. The model classifies 30 diagnoses using various
reduced-lead combinations of the 12-lead ECG signals col-
lected from patients around the world [6].

The rest of the paper is organized as follows: Section
2 provides a detailed description of our proposed model,
Section 3 presents the results, and Section 4 discusses the
performance and weakness of our model.

2. Methods

The PhysioNet/CinC Challenge 2021 provided six real-
world datasets of ECG signals. Due to multi-dimensional
and temporally dependent nature of the data, we designed
a CNN-based model that has historically been used to clas-
sify ECG signals [7]]. In addition, a parallel shallow per-
ceptron was employed for heart rate variability (HRV) fea-
ture analysis using extracted statistical signal information.
In the following subsections, the proposed model and data
processing steps are described.

2.1. Feature Extraction

The extracted features for the perceptron were age, gen-
der, time domain heart rate variability (tdHRV), and non-
linear domain heart rate variability (nlHRV) features (see
Tables [I] & [2] for details). Both the time-based and the
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non-linear HRV features were extracted from lead II be-
cause it is most commonly used for rhythm detection and
is present in all lead combinations for the challenge [6]]. A
total of 47 raw features were extracted using neurokit [§].
To reduce high dimensionality and subsequent computa-
tion complexity of the extracted features, principal com-
ponent analysis (PCA) was used to reduce the extracted
features from 47 to 10. Tables|[I] & [2]depict a sample of the
47 raw features extracted before PCA was conducted. This
reduced feature set was then scaled using standardization.

Feature Explanation
MeanNN Mean of the RR intervals
SDNN Std Dev of the RR intervals
SDANNI1 Std Dev of avg. RR intervals
SDNNI1 Mean of Std Dev of RR intervals
RMSSD Sqrt. of'mean qf sum of
successive RR intervals
Std Dev of successive diff.
SDSD between RR intervals
CVNN SDNN/ MeanNN
CVSD RMSD/ MeanNN
MedianNN  Median |diff. between RR intervals|
HTI HRV Triangular index

Table 1: Sample of tdHRV features

Feature Explanation

SD1 Measure of the spread of RR intervals
SD2 Long-term RR interval fluctuations index
SD1SD2  SD1/SD2

CSI Cardiac Sympathetic Index

CVI Cardiac Vagal Index

CSI.mod Modified CSI

GI Guzik’s Index

SI Slope Index

FuzzyEn  Fuzzy Entropy

Table 2: Sample of nIHRV features

2.2.  Signal Preprocessing

The signals were detrended using signal-detrend
function from neurokit library [§]] in Python. By de-
trending, only the differences in values arising from the
cyclical nature of the signal and other inherent patterns as-
sociated with the CVDs will be identified. A 2nd order
butterworth band-pass filter was applied to remove the fre-
quencies lower than 5Hz and higher than 100Hz, using the
function signal-filter fromthe neurokit library.

FULL SIGNAL LENGTH

Tsec 5 sec

STRIDE WINDOW

Figure 1: Windowing and stride of a filtered signal

The six different datasets available for this challenge
[5L|6] had three different sampling frequencies: 1000Hz,
500Hz, and 257Hz. Fourier transform was used to down-
sample all signals to 100Hz to provide the classifier with
consistent time-scale data and to reduce the size of the
overall dataset.

The signals were then segmented into 5-second win-
dows with a stride of one second (see Figure[I). This re-
sulted in 4-second overlap for the adjacent signals (e.g.,
a 10-second signal will be transformed into six 5-second
signals).

A standardization method was applied on the windowed
signal and on the selected extracted features separately and
both scalars were used to modify the testing data as well.

2.3. Wide and Deep Model

The wide and deep model architecture, visualized in
Figure[2] allows the model to combine ECG extracted fea-
tures and statistical patterns found within the signals them-
selves, to produce a more robust multi-label classification.
Five different models were created to classify the record-
ings. Each model retains the core architecture, except the
input layer dimensions were changed in each model to ac-
commodate the different lead combinations.

The models consist of two modules: i) a deep CNN for
converting the raw signal into a series of embeddings by
learning the patterns within the recording, and ii) a shallow
perceptron network for finding patterns in the extracted
features. The deep network consists of four convolution
blocks. After the convolution blocks, a flatten layer is used
to convert the 2D shape of the patterns to a vector of em-
beddings. Two fully connected layers are used to reduce
the dimension of the embedding vector. The modular na-
ture of the model allows adding a deep CNN network and
a shallow perceptron to create an overall ‘wide’ model.

2.3.1. Deep Module

The deep module of the network consists of four convo-
lution blocks to capture sequentially related features which

Page 2



Input Input
{n, 500, leads) (n, features)

MLP

Max Pooling

Batch Norm

RelU
(40,)

Combined 30,

Figure 2: Visualization of the wide & deep model
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are embedded in the ECG signals. Each CNN block in-
cludes two 1D convolution layers, a dropout layer, a max
pooling layer, and a batch normalization layer; see Figure
[2]for a visualization of the model’s organization. The num-
ber of filters in each convolution layer is the same for each
layer in the block. The number of filters for the block in-
creases by a factor of two for every convolution block (i.e.,
64 for block one, 128 for block two, and 256 for blocks
three and four). Each convolution layer uses a filter size of
(3x1). To reduce the complexity of the convoluted signals,
a max pooling layer is used with a mask size of two. This
halves the length of each signal, but keeps the most im-
portant activations. To help prevent overfitting, a dropout
layer with the rate of 0.3 was included after the second
convolution layer in the block. At the end of each block,
a batch normalization layer is used to standardize the pro-
cessed outputs of the convolution block for use in the next
block. In the deep module of the network, the preprocessed
signal (see section is passed through the convolution
blocks, then flattened. To reduce the dimension and find-
ing non-linear patterns, two dense layers of 500 and 100
neurons were added after the flatten layer.

2.3.2. Wide Module

The wide module of the network is a neural network
(NN) with two layers. The first layer is an input layer of
10 neurons, which takes the 10 extracted features by PCA
from the preprocessing step. The second layer has four
neurons to further reduce the dimensionality of the features
and to identify non-linear patterns between the features.

The outputs of the perceptron and the deep modules are
concatenated to form a layer of 104 neurons: 100 are from
the deep module output, and 4 are from the perceptron
module output. This layer is then passed to a layer with

40 neurons and then to the final output layer, consisting of
30 neurons with a sigmoid activation function; one neuron
for each scored classification.

24. Model Training and Testing

Binary cross-entropy was used for loss function calcula-
tion and training, which is commonly used for multi-label
classification problems. The Adam optimizer was used for
finding parameters resulting in minimal loss, with a learn-
ing rate of 0.0001. The models were trained for a maxi-
mum of 20 epochs with the batch size of 32, however early
stopping was used as a method of preventing overfitting of
the model. Hence, the number of epochs the models were
trained on rarely completed the 20 epoch limit. To accom-
plish this, the training data were split into training set and
validation set where the training data consist of 85% of the
total training data. The model was trained until the vali-
dation loss stopped decreasing for three sequential epochs
(i.e., patience).

Training the model was done on the preprocessed sig-
nal lengths of five seconds. However, both the training
and the test datasets contained signals with signal lengths
greater than 5-second. As there is no annotation for each
heartbeat of the signal, selecting a 5-second of the signal
that has some information of abnormalities is a significant
challenge. To overcome this challenge, we selected all 5-
second windows of the signal starting from time O using
the stride of 1 second to produce n overlapping windowed
signals. All related overlapping n windowed signals are
passed to the classifier sequentially, and any classes pre-
dicted for an individual window will be applied to the final
prediction of the overall signal.

The augmentation process was implemented by calcu-
lating the maximum probability of each class that resulted
from applying the classifier on all 5-second segmented sig-
nals. This method was chosen to ensure that less common
conditions could still be scored positive, even if that con-
dition only appeared in the small segment of the entire sig-
nal.

For local evaluation, 85% of the public data were saved
as training and validation data, and 15% were saved as test-
ing data. After that, the model was trained and validated
on the training data, and the test data was used to evaluate
the model using the testing code provided by the challenge
organizers. The output of testing was then used to score
the model using the challenge metric, also provided by the
challenge organizers.

3. Results

Table [3] shows the evaluated challenge scores for our
best entry on the public offline training set along with the
scoring on the hidden validation set, and the final scoring
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on the hidden test set. It also has the ranking of our model
on the hidden test set among the 39 ranked teams out of
the 68 teams in the challenge.

The model scored the highest for the 12-leads obtaining
challenge score of 0.52 on the validation data and 0.36 on
the hidden test data.

Leads | Training | Validation | Test | Ranking
12 0.65 0.52 0.36 23
6 0.33 0.39 0.30 26
4 0.64 0.42 0.31 26
3 0.62 0.40 0.29 27
2 0.64 0.41 0.34 22
Table 3: Best challenge scores among our (team

Biomedic2ai) several trials on the public training set, best
entries on the hidden validation set, and one-time scoring
on the hidden test set along with the ranking on the hidden
test set.

4. Discussion and Conclusions

There are two important parts in the process of develop-
ing a classifier, preprocessing of the data and designing the
model. For designing the model, we designed a wide and
deep model to be able to use the raw data from the ECG
signals in addition to the lead II statistical data which was a
common lead in all lead montage combinations. For both
modules of the model, hyperparameters were tuned, the
number of CNN layers were explored, and the size and the
number of filters were refined for enhanced performance.
For the preprocessing component of this work, we chose
the parameters to reduce memory and the computation re-
sources.

Developing the wide model by combining the percep-
tron in parallel with the dCNN significantly improved the
performance of the classifier with respect to earlier mod-
els using only dCNN. Using the wide model at the second
(official) phase of the challenge overcame the low perfor-
mance of the classifier from the first (unofficial) phase of
the challenge for the 6-lead combination compared to the
rest of the lead-combination scores.

our score for classification of the 6-lead data is lower
than that of 4-lead, 3-lead and 2-lead. Our assumption is
that more leads, and more data, should result in higher per-
formance; however, there may be redundant information
in the 6-lead signals that confused the model. we note this
as a limitation of our approach that requires further study.
One way to solve this unexpected outcome might be the
use of different or customized modules for each combina-
tion of the leads.

Similar to other medical AI challenges, highly imbal-
anced data presents a significant challenge that results in

poor predictive performance, especially for the minority
classes. As an additional consideration for future study, we
intend to employ and develop class balancing techniques to
overcome this issue for real-time medical data.
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