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Abstract

Electrocardiogram (ECG) signals are widely used to di-
agnose heart health. Experts can detect multiple cardiac
abnormalities using the ECG signal. In a clinical setting,
12-lead ECG is mainly used. But using fewer leads can
make the ECG more pervasive as it can be integrated with
wearable devices. At the same time, we need to build sys-
tems that can diagnose cardiac abnormalities automati-
cally. This work develops a channel self-attention-based
deep neural network to diagnose cardiac abnormality us-
ing a different number of ECG lead combinations. Our ap-
proach takes care of the temporal and spatial interdepen-
dence of multi-lead ECG signals. Our team participates
under the name “cardiochallenger” in the “PhysioNet/-
Computing in Cardiology Challenge 2021”. Our method
achieves the challenge metric score of 0.55, 0.51, 0.53,
0.51, and 0.53 (ranked 2nd, 5th, 4th, 5th and 4th) for the
12-lead, 6-lead, 4-lead, 3-lead, and 2-lead cases, respec-
tively, on the test data set.

1. Introduction

With over 17.9 million deaths, cardiovascular diseases
are the leading cause of mortality worldwide [1]. The
heart’s activity from different angles can be studied from a
12-lead ECG. Detection of multiple cardiac abnormalities
like coronary occlusion, myocardial infarction, etc., can be
done using a 12-lead ECG.

Early-stage prognosis and timely interventions aid clini-
cians in identifying different cardiac irregularities and pro-
vide improved clinical outcomes. The PhysioNet/CinC-
2021 challenge is dedicated to cardiac abnormality clas-
sification (CAC) from 12-lead, 6-lead, 4-lead, 3-lead, and
2-lead ECG recordings [2]. Early and accurate detection
of diseases with fewer leads makes ECG greater pervasive
as it can be incorporated with wearable devices. Conven-
tional CAC methods regularly employ machine learning

models on the extracted domain-aware handcrafted fea-
tures using raw ECG signal processing. Of late deep learn-
ing (DL) methods have democratized the CAC task with
superior performance [3],[4],[5]. DL models can abstract
explanatory ECG feature representations in an automated
fashion and predict CACs in an end-to-end manner [6],[7].
This paper proposes an attention-based DL model, which
will help medical practitioners judiciously inspect and cat-
egorize the inter-beat and intra-beat patterns. The pro-
posed model acknowledges the spatial interrelation among
the channels and the important temporal segments of the
signal.

The rest of the paper is organized as follows. Section 2
summarizes the data pre-possessing and our channel self-
attention-based DL model. Experimental results are dis-
cussed in sections 3 and 4. Section 5 concludes the paper.

2. Methodology
Cardiac abnormality detection using ECG signals can

be formulated as a time-series classification problem. We
aim to detect 29 multi-labeled cardiac abnormalities along
with sinus rhythm using varying lead ECG signals [2]. The
model is trained on 12-lead ECG and tested on:
• 12-lead: I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6
• 6-lead: I,II,III,aVR,aVL,aVF
• 4-lead: I,II,III,V2
• 3-lead: I,II,V2
• 2-lead: I,II

In this paper, a channel self-attention (CA)-based frame-
work, as depicted in Figure 1 is proposed for the diagnosis
of multi-labeled cardiac abnormalities. The model is in-
spired by squeeze and excitation network [8]. The global
spatial information is squeezed, and channel-wise statistic
is generated by CA framework. Higher weight is given to
the more imperative channel, which leads to enhanced per-
formance. Here, it is applied with the inception and resid-
ual neural model. In the following section, we provide a
detailed description of the system’s components.
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Figure 1. Pipeline for cardiac abnormalities detection

2.1. Data pre-processing

The publicly available challenge dataset consists of
88,253 twelve-lead ECGs recordings. The data is collected
from 4 countries across 3 continents. The sampling fre-
quency of the ECG signals varies from 257 Hz to 1000 Hz,
and signal duration ranges from 6 seconds to 30 minutes.
All the signals are down-sampled to 125 Hz to handle the
variable sampling frequency of the signals. If the signal is
too long, it is truncated after 120 seconds.

2.2. Channel self-attention based DL model

The input to the proposed CA-based model is a variable-
length ECG segment (X = [x1, ...., xk]) and the predic-
tion of 29 cardiac abnormalities along with sinus rhythm is
the model’s output. The proposed CA-based architecture
is shown in figure 2(a). The channel depth and the num-
ber of inception and residual blocks are experimentally de-
cided, and the tuning of network parameters is done by
hit and trial. The channel self-attention-based DL model is
the ensemble of: 1) Inception and Residual architecture; 2)
Channel self-Attention architecture; 3) Attention pooling.

2.2.1. Inception and residual architecture

The idea of inception came from [9], where sparsely
connected architecture was introduced to replace the fully
connected connection of Convolution Neural Network
(CNN) layers. In this paper, the Inception model has con-
volution layers with a 1-D filter of sizes 3,4 and 5 with
ReLu activation. The inputs to the CNN can be of a vari-
able length, so the model is accustomed to handle variable-
length data. The channel number increases as we move
forward in the architecture. Figure 2(c) demonstrated the
interior of the Inception blocks used in the model. The
residual neural network helps in solving the problem of
vanishing gradient [10]. The CNN layers in the Incep-
tion block maps the input xj to low dimension embedding
hk = fψ(xj), where fψ is transformation function with
parameter ψ. The output of the residual block is y = F
(hj) +G(xj), where F(.) shows the residual mapping to be
learned and G(.) is the convolution layer added to match
the dimension. Figure 2(b) demonstrates the residual block
in the proposed DL model.

2.2.2. Channel self-attention architecture
CNN extracts the spatial features. Each channel repre-

sents the information of the feature map extracted. Adap-
tive weights can be assigned to the channel to find the
interrelation among the channels. Therefore, we built a
channel self-attention module to use the interdependence
among the channels.

The idea of Channel self-Attention is derived from SE-
Net [8] where inter-dependency among channels is cap-
tured as a function of channel description (global average).
The main difference is that instead of finding explicit re-
lation among channel descriptions, multiple channel de-
scriptions are used, and channel attention is computed only
using the feature vector extracted from the corresponding
channel. The feature vector is extracted by passing spatial
features channel-wise to one-dimensional CNN. 32 filters
are used to extract 32 deep features as shown in figure 3.
Here the interrelation among channels is captured through
sharing the weights for calculating self-attention. Applica-
tion of attention mechanism channel-wise can be regarded
as the method of choosing semantic attributes.

2.2.3. Attention pooling layer
The attention pooling was introduced by [11] which is

an adaptive multi-instance pooling method. Depending
on the number of classes, it is modified to multi-head at-
tention. Corresponding to every feature vector, segment
weights are generated by multi-head attention neural net-
work. The Softmax activation function is used to ensure
that the weight sums up to 1. The attention mechanism
helps make the model interpretable and replaces the widely
used Long Short-Term Memory (LSTM) or Bi-LSTMs.
The higher weights give importance to that segment of the
signal.

Let V = {v1, v2, · · · , vK} is a bag of K feature vec-
tors, then attention pooling is defined as: p =

∑K
k=1 akvk.

Here, p ∈ RN×L is the feature vector corresponding to
N classes heart disease. ak =

exp{WT tanh(UvTk )}∑K
j=1 exp{WT tanh(UvTj )} ,

where, U and W are trainable parameters.

2.3. Threshold optimisation
The output from the attention pooling layer is passed

to the prediction layer for the detection of abnormalities.
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Figure 2. Channel self-Attention-based DL architecture. One-hot encoding of cardiac abnormalities classes is the output
(grey) of the model. The figure illustrates: (a) proposed CA-based DL model; (b) Residual network block; (c) Inception
network block.

The Sigmoid activation in the prediction layer will give
the probabilities of the occurrence of sinus rhythm and 29
cardiac abnormalities. For evaluating the challenge met-
ric score, these probabilities need to be changed in binary
format by applying the threshold value on these predic-
tions. If the prediction crosses the threshold value, 1 is
assigned to the corresponding class else 0. The genetic
algorithm optimized thresholds for each class that maxi-
mizes the challenge metric on the validation dataset.

2.4. Implementation Details

The dataset consists of 133 abnormalities, but in the
challenge, it is required to detect 29 cardiac abnormalities
along with sinus rhythm, and their SNOMED CT codes
are included in the challenge evaluation metric along with
the reward matrix (Wreward) [12]. The loss function is
described below:
loss(x, y) = mf · BCE(x, y) − Snormalised. Here,

BCE is Binary Cross-Entropy loss,mf is a multiplication
factor which scales the BCE loss by a factor of 0.1 if the
difference between true and predicted label is less than 0.3
and Snormalised is the normalised challenge metric which
is computed as, Snormalised = Sobserved−Sinactive

Strue−Sinactive
, where,

S(x,y) = XT × ( y
norm ) ·Wreward, norm = max(x+ y−

xy, 1).
For training, the model Adam optimizer was used with a

Figure 3. Schema of Channel self-attention architecture

learning rate of 0.001. The parameters are initialized using
Xaviar uniform initializer. The early stopping method is
also incorporated in the algorithm to avoid overfitting the
model. The model trained for 100 epochs with 32 batch
size. The model has 7,15,512 trainable parameters.
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3. Results
The table 1 shows challenge metric score on the train,

validation and test dataset for variable number of ECG
leads. For the training set, the proposed model is trained on
a publicly available dataset given by PhysioNet/CinC chal-
lenge is trained and validated on 80% and 20% of training
set respectively. The model is also validated and tested on
hidden 6,630 and 16,630 ECG recordings. The proposed
model requires 2497 minutes for training.

Table 1. Challenge metric score on training, validation
and test set and overall ranking on hidden test set

Leads Training set Validation set Test Set Ranking
12-Lead 0.81 0.64 0.55 2nd

6-Lead 0.79 0.64 0.51 5th

4-Lead 0.77 0.64 0.53 4th

3-Lead 0.77 0.63 0.51 5th

2-Lead 0.75 0.63 0.53 4th

4. Discussion
This paper proposed a channel self-attention DL model

to detect cardiac abnormalities using 12-lead, 6-lead, 4-
lead, 3-lead, and 2-lead. The attention mechanism was
used to capture the informative segment of the signal along
with spatial interdependence among the channels.

We truncated the ECG data that is more than two min-
utes long during the pre-processing of the raw signal. Our
decision to trim affected 74 samples, which is relatively
low (< 0.01 % of the total samples).

The duration of the input signal varies from 6 seconds
to 2 minutes. We made the input length to our CA model
a variable length to make it robust for any length of data
to be used in real-time. We tried to make a generalized
model that can handle the training dataset’s heterogeneity
and variable-length data.

5. Conclusion
This paper has described a channel self-Attention neu-

ral network-based approach to classify cardiac abnormali-
ties presented in the PhysioNet/Computing in Cardiology
Challenge 2021. Our DL model can classify 29 cardiac ab-
normalities and sinus rhythm with a challenge metric score
of 0.55, 0.51, 0.53, 0.51, and 0.53 for the 12-lead, 6-lead,
4-lead, 3-lead, and 2-lead cases, respectively, placing us in
the top-five team in the competition. In future, we aim to
handle data imbalance and infuse ensemble framework to
enhance the model performance.
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