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Abstract

We explore whether specific time-varying shape char-
acteristics of electrocardiograms can be tapped to inform
computational approaches in classifying cardiac abnor-
malities. In particular, we train a random forest classi-
fier on features derived from relative differences between
algebraically-computable topological signatures of con-
secutive segments within ECGs. We convert segments
of ECGs as point cloud embeddings in high-dimensional
space, extract their topological summaries, and compare
these via statistical descriptors and different metrics. As
part of the PhysioNet/Computing in Cardiology Challenge
2021, we (Team Cordi-Ak) test this approach across full-
and reduced-lead ECGs. Using the Challenge’s evalua-
tion metric, our classifiers received scores of -0.06, -0.07,
-0.08, -0.08, and -0.10 (consistently ranked 35th out of 39
official entries) for the 12-lead, 6-lead, 4-lead, 3-lead, and
2-lead versions of the hidden test set.

1. Introduction

Access to early and accurate diagnosis of cardiac con-
ditions affords options to ensure survivability or promote
tailor-fit treatment programs. As such, there abound many
initiatives that explore automation of classifying cardiac
abnormalities based on readily available, non-intrusive,
and inexpensive sources of data by tapping fast-developing
machine and deep learning technologies [[IH7]]. Needless
to say, the success of these initiatives entails far-reaching
influence on the future of Cardiology as it promotes a
paradigm shift in the way cardiac conditions are studied by
significantly cutting down on temporal and highly special-
ized skill requirements for obtaining accurate diagnoses.

In this work, we continue our inquiry on the utility and
viability of topological information embedded within elec-
trocardiogram (ECG) readings in informing methods for
classification tasks. We build on our work in [§8]] where, in-
spired by the 2017 Physionet Challenge [[1], we used topo-
logical features induced from time-delayed embeddings of
single-lead ECGs to detect Atrial Fibrillation (AF), and our
previous participation in the 2020 Physionet Challenge [6]
where we used statistical moments from topological signa-
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tures extracted from point cloud embeddings representing
segments of collections of ECG leads to train a two-level
random forest model in a multi-class classification task.
The primary deviations in the current approach are: (i) we
use the groupings of leads provided by the 2021 Physionet
Challenge [7]] instead of the proposed groupings that we
constructed in [9] to collectively span the full ECG record-
ing and incorporate specific collections of leads described
in the literature as references for diagnosing specific car-
diac conditions; and (ii) we compute differences in the
extracted topological signatures between consecutive seg-
ments instead of the actual signatures themselves as base
for feature engineering. For a comprehensive description
of the Challenges, including the data and specific rules that
shaped our approaches, we refer the reader to [6L[7].

2. Methods

Our pipeline follows the standard approach in TDA-
informed machine learning: model the data via abstract
algebraic objects, extract homology-based signatures for
feature engineering, and employ machine learning algo-
rithms and strategies for classification and evaluation.

2.1. Segmentation and Representation

We begin by partitioning each full and reduced-lead
ECG recordings into segments, each covering 750 time
points to represent roughly three periods of a regular car-
diac cycle recorded in the ECG. The choice of including
three periods per segment is so that each segment will
hopefully capture at least one non-abnormal period of the
cardiac rhythm that can be used as basis for anomaly detec-
tion in the adjacent periods. The distribution in the lengths
of all recordings in the training data reveals that a signif-
icant majority of all recordings contain fewer than 5000
time points. Thus, to ensure uniformity and comparability
of topological features observed across ECGs, we consider
the first five consecutive segments in every recording.

Where possible, to minimize the inherent multi-
collinearity among the leads, we perform Principal Com-
ponent Analysis (PCA) and take the first four principal
components accounting for about 98% of explained vari-
ance. Otherwise, we treat actual values in reduced-lead
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Figure 1. Consecutive segments of ECGs are transformed
as point clouds objects using four principal components
(top 2 rows; points are colored using the fourth principal
component). For 2- and 3-lead recordings, actual values
are used as coordinates to generate the point clouds (third
row). Persistence diagrams are then computed to extract
topological signatures of the point clouds (bottom row).

recordings as components. We use these components as
coordinates to represent each segment as point cloud ob-
jects (see Figure[I). Finally, we use simplicial complexes
as combinatorial models that encode the topology of the
point clouds as well as the local similarity profiles of points
in the high-dimensional representation with respect to the
euclidean distance, and persistent homology to capture
evolving topological signatures of the combinatorial model
recorded as persistence diagrams (see Figure [T). We refer
the interested reader to [[10] for a quick introduction to this
approach in the context of time series classification.

2.2.  Feature Extraction and Engineering

Using the computed persistence diagrams from differ-
ent segments, we craft features by taking standard statisti-
cal descriptors on observed differences between diagrams
from consecutive segments. We only focus on topological
signatures in dimensions 0 and 1 corresponding to clus-
tering and periodicity information embedded in the point
cloud representation. We summarize the features below.

1. Minimum, range, mean, standard deviation, skewness,
and kurtosis of the collection of dimension O bottleneck
distance between consecutive segments computed using
the LUMAWIG algorithm [[11].

2. Minimum, maximum, mean, standard deviation, skew-
ness, and kurtosis of the collection of dimension 1 persis-

tent entropy [[12] within segments.

3. Minimum, maximum, mean, standard deviation, skew-
ness, and kurtosis of the collection of absolute differences
in dimension 1 persistent entropy between segments.

4. Minimum, maximum, mean, standard deviation, skew-
ness, and kurtosis of the collection of differences in persis-
tence landscape [13]] features (see [9]) between segments.

5. Minimum, maximum, mean, and standard deviation of
the collection of differences in persistence diagram (bar-
code) [|14]] features (see [9]]) between segments.

To evaluate the utility and practicality of our crafted fea-
tures, we include demographic data (age and sex), statisti-
cal moments of RR intervals for each lead extracted us-
ing Vest et al.’s toolbox [[15[], and some naive baseline fea-
tures (root mean square (RMS) per lead). We include the
static topological features listed second in the list above
to benchmark the performance of variation-based features
against non-variation-based topological features.

2.3. Classifier Training

We train a random forest classifier over the public train-
ing data on 200 trees with a maximum of 20 leaf nodes per
tree, where leaf nodes contain no fewer than 5 samples,
and are split when a minimum of 10 samples is reached.
Due to running time and memory usage limits, we cap to
5000 the number of ECG recordings used in training for
classes (Normal Sinus Rhythm (NSR) and Sinus Brady-
cardia (SB)) that significantly outnumber other classes.

To examine how variation-based features fare against
other features, we rank all features by importance using
scikit-learn [[16], determine the type distribution of the top
100 features, and re-train the classifier using the top 100
features. The distribution of the top 100 features used for
final training is summarized in Figure[2]
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Figure 2. Breakdown of features in the top 100 features
ranked by importance and used in the final training.

Unfortunately we are not able to optimize the classifier’s
parameters based on validation performance due to failure
of all but one of our submissions to complete both training
and testing at the Challenge’s computing system.

3. Results

We report the average Challenge scores as well as other
validation metrics obtained over a 5-fold stratified cross
validation on the entire public training data in Table|[T]

We also report using the heatmap in Figure 3| the 5-fold
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Leads Training | Validation | Test | Ranking
12 | 0.23 +£0.00 0.17 | -0.06 35/39
6 | 0.22£0.00 0.15 | -0.07 35/39
4 10.204+0.01 0.15 | -0.08 35/39
310.19£0.01 0.15 | -0.08 35/39
2 10.19£0.01 0.13 | -0.10 35/39
Table 1. Challenge scores for our final selected entry

(team Cordi-Ak) using 5-fold cross validation on the pub-
lic training set, repeated scoring on the hidden validation
set, and one-time scoring on the hidden test set as well as
the ranking on the hidden test set among official entries.

cross validation average for the area under the receiver op-
erating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC) across all cardiac di-
agnosis classes. We omit the obtained F;-scores due to
very high correlation with AUPRC across all models.

Score [INININNEE NumberofLeads [l 2 3 W 4 W 6 W 12
0.25 0.50 0.75
0.75
0.83
0.71
0.92
0.88

0.81
0.61
0.71
0.78
0.74
0.66
0.87
0.65

Diagnosis

0.69
0.79 | 0.69 |
0.62  0.64 |
0.86
0.77
0.8 | 0.85 |
0.63 (0.05 } 0.66 | 0.05
0.74 | 0.8 §0.06 |
0.74
0.93
0.93 5
0.65
B 068 [0.09 0.68 [0.60 §0.11

R
O

! 0. L
N)P\Oc A\)PRC A\)ROC A\)‘?RC P\\J\‘loc Aué‘RC NJ\"DC N)PRC AU\‘zOC AU‘P
Validation Metric

Figure 3. Pairs of columns color-coded by the number of
leads used, report the average AUROC and AUPRC ob-
tained from a 5-fold cross validation over the training set.

Finally, we test the 5-fold cross validation models on the
training data from different Challenge databases (CPSC
and CPSC-Extra [2]), INCART [17], PTB and PTB XL
(191, Georgia [6l[7], Chapman-Shaoxing [20] and Ningbo
[21]) and report this in Table [2] The organizer-provided
Challenge scores on hidden test sets (CPSC, GI12EC,
Undisclosed, and UMich [6,7]) also appear in Table 2}

4. Discussion and Conclusions

As with our experience during the 2020 Physionet Chal-
lenge, our topology-based approach proved computation-
ally expensive. As such, we implemented some interven-
tions to manage computational costs. For example, while
each segment considered covers 750 time points, we skip
every other point in the sequence, thereby halving the num-

Database | VAlidation ‘ Number of Leads
Metic | 2 [ 3 [ 4 [ 6 [ 12
5-fold cross validation models applied to databases

AUROC | 0.90 | 091 | 0.90 | 0.90 | 0.90
CPSC AUPRC | 0.74 | 0.75 | 0.74 | 0.75 | 0.76
F1-Score | 0.17 | 0.18 | 0.17 | 0.17 | 0.18
Challenge | 0.32 | 033 | 0.32 | 0.35 | 035
AUROC | 095 | 094 | 095 | 0.94 | 0.93
CPSC AUPRC | 0.77 | 0.78 | 0.77 | 0.77 | 0.78
Extra F1-Score | 0.60 | 0.57 | 0.60 | 0.55 | 0.56
Challenge | 0.78 | 0.80 | 0.78 | 0.79 | 0.79
AUROC | 094 | 097 | 097 | 093 | 0.95
AUPRC | 0.86 | 0.87 | 0.90 | 0.86 | 0.85
INCART F1-Score | 0.83 | 0.79 | 0.75 | 0.71 | 0.61
Challenge | 0.74 | 0.75 | 0.70 | 0.65 | 0.63
AUROC | 0.88 | 0.89 | 0.89 | 0.89 | 0.92
PTB AUPRC | 0.69 | 0.74 | 0.75 | 0.75 | 0.81
F1-Score | 0.26 | 0.28 | 0.37 | 0.36 | 0.56
Challenge | -1.38 | -1.71 | -1.79 | -1.81 | -1.83
AUROC | 091 | 091 | 091 | 092 | 0.92
PTB AUPRC | 0.71 | 0.71 | 0.72 | 0.72 | 0.73
XL F1-Score | 0.61 | 0.60 | 0.60 | 0.57 | 0.60
Challenge | 0.50 | 045 | 043 | 043 | 0.44
AUROC | 094 | 094 | 094 | 0.94 | 0.95
Georgia AUPRC | 0.80 | 0.81 | 0.81 | 0.81 | 0.83
F1-Score | 0.69 | 0.69 | 0.68 | 0.68 | 0.71
Challenge | 0.54 | 0.60 | 0.60 | 0.58 | 0.64
AUROC | 091 | 093 | 093 | 093 | 0.94
Chapman- AUPRC | 0.76 | 0.78 | 0.78 | 0.79 | 0.80
Shaoxing Fl1-Score | 0.56 | 0.57 | 0.57 | 0.56 | 0.58
Challenge | 0.54 | 0.56 | 0.58 | 0.63 | 0.63
AUROC | 092 | 092 | 093 | 093 | 0.94
Ningbo AUPRC | 0.77 | 0.78 | 0.78 | 0.79 | 0.80
F1-Score | 0.67 | 0.67 | 0.68 | 0.69 | 0.70
Challenge | 0.56 | 0.58 | 0.61 | 0.65 | 0.66

Organizer-provided scores on hidden test sets
AUROC | 0.64 | 0.65 | 0.65 | 0.63 | 0.65
CPSC AUPRC | 023 | 027 | 0.26 | 0.24 | 0.26
F1-Score | 0.07 | 0.08 | 0.08 | 0.08 | 0.08
Challenge | 0.18 | 0.17 | 0.16 | 0.17 | 0.18
AUROC | 0.69 | 0.70 | 0.71 | 0.70 | 0.69
AUPRC | 0.14 | 0.15 | 0.16 | 0.16 | 0.16
GI2EC F1-Score | 0.07 | 0.07 | 0.08 | 0.08 | 0.08
Challenge | 0.13 | 0.15 | 0.15 | 0.15 | 0.18
AUROC | 0.64 | 0.66 | 0.66 | 0.65 | 0.64
Undisclosed AUPRC | 0.17 | 0.18 | 0.18 | 0.18 | 0.18
F1-Score | 0.02 | 0.02 | 0.02 | 0.03 | 0.02
Challenge | -0.41 | -0.41 | -0.41 | -0.40 | -0.43
AUROC | 0.68 | 0.69 | 0.69 | 0.70 | 0.69
UMich AUPRC | 0.15 | 0.16 | 0.16 | 0.17 | 0.16
F1-Score | 0.06 | 0.07 | 0.07 | 0.07 | 0.08
Challenge | -0.04 | -0.01 | 0.00 | 0.00 | 0.03

Table 2. Validation and test scores on different databases.

ber of uniformly sampled points that generate the point
cloud. While, in principle, this method should still pre-
serve the global structure of the resulting representation, it
does introduce an unexamined loss of information on the
local dynamics of the time series data and may result to
missing important portions of an anomaly event.

We also note that the trained classifiers exhibit symp-
toms that reflect our non-optimization of tuning parame-
ters. For example, despite training with balanced weight-
ing across classes, capping the number of NSR or SB used
for training still introduced notable improvements in the
classification accuracy of other less represented classes
at the moderate expense of these two overly represented
classes. This poses an intriguing question on the robust-
ness of topology variation-based features from artefacts
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of model architecture or data imbalance. Meanwhile, the
highly contrasting average 5-fold cross validation metric
scores (see Table|l)) against those from different databases
(see Table[2)) points to a considerable degree of overfitting.

With respect to Figure [3] the relatively high AUROC
and AUPRC class scores, consistent across variable lead
inclusions, suggest the presence of signal in the topologi-
cal variations across segments within full and reduced-lead
ECGs for diagnosing specific conditions. However, this
must be balanced with the observation from Figure [2| that
the number of ranking variation-based features decreases
as the feature pool grows. This suggests the need to am-
plify this signal to maintain its model influence.

The current model seems to provide acceptable accu-
racy levels for classifying the normal sinus rhythm, sinus
Bradycardia and Tachycardia correctly. It is interesting to
note that the set of classes which the current model is able
to classify at acceptable accuracy levels is almost com-
pletely disjoint from that of our earlier topology-informed
model in [9] that uses actual topological signatures within
segments rather than observed variations between them.
This suggests that the two approaches indeed capture dif-
ferent information suited for classifying different classes,
prompting a further examination on the complementarity,
and the degree of such, between the two approaches.
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