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Abstract

Quantification of nonlinear interactions between two nonstationary signals presents a
computational challenge in different research fields, especially for assessments of physiological
systems. Traditional approaches that are based on theories of stationary signals cannot resolve
nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in
physiological systems. In this review we discuss a new technique “Multi-Modal Pressure Flow
method (MMPF)” that utilizes Hilbert-Huang transformation to quantify dynamic cerebral
autoregulation (CA) by studying interaction between nonstationary cerebral blood flow velocity
(BFV) and blood pressure (BP). CA is an important mechanism responsible for controlling
cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The
influence of CA is traditionally assessed from the relationship between the well-pronounced
systemic BP and BFV oscillations induced by clinical tests. Reliable noninvasive assessment of
dynamic CA, however, remains a challenge in clinical and diagnostic medicine.

In this brief review we: 1) present an overview of transfer function analysis (TFA) that is
traditionally used to quantify CA,; 2) describe the a MMPF method and its modifications; 3)
introduce a newly developed automatic algorithm and engineering aspects of the improved MMPF
method; and 4) review clinical applications of MMPF and its sensitivity for detection of CA
abnormalities in clinical studies. The MMPF analysis decomposes complex nonstationary BP and
BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific
physiologic process can be represented in a corresponding empirical mode. Using this technique,
we recently showed that dynamic CA can be characterized by specific phase delays between the
decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in
hypertensive, diabetics and stroke subjects with impaired CA. In addition, the new technique
enables reliable assessment of CA using both data collected during clinical test and spontaneous
BP/BFV fluctuations during baseline resting conditions.
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[. Introduction

Previous works have demonstrated that fluctuations in physiological signals carry important
information reflecting the mechanisms underlying control processes and interactions among
organ systems at multiple time scales. A major problem in the analysis of physiological
signals is related to nonstationarities (statistical properties such as mean and standard
deviation vary with time), which is an intrinsic feature of physiological data and persists
even without external stimulation.1=3 The presence of nonstationarities makes traditional
approaches assuming stationary signals not reliable. To resolve the difficulties related to
nonstationary behavior, concepts and methods derived from statistical physics have been
applied in the studies of different control mechanisms including locomotion control,4—6
cardiac regulation,”: 8 cardio-respiratory coupling,®~1! renal vascular autoregulation,12
cerebral blood flow regulation,13716 and circadian rhythms.17719 One of the innovative
approaches applied to physiological studies is Hilbert Huang transform (HHT) 29. The HHT
is based on nonlinear chaotic theories and has been designed to extract dynamic information
from nonstationary signals at different time scales. The advantages of the HHT over
traditional Fourier-based methods have been appreciated in many studies of different
physiological systems such as blood pressure hemodynamics 21 , cerebral autoregulation 13
15+ 16, cardiac dynamics 22, respiratory dynamics 23,and electroencephalographic activity24.
In this review, we focus on the computational challenge on the quantification of interactions
between two nonstationary physiologic signals. To demonstrate progress in resolving the
generic problem related to nonstationarities, we review the recent applications of nonlinear
dynamic approaches based on HHT to one specific physiological control mechanism—
cerebral blood flow regulation.

Cerebral autoregulatory mechanisms are engaged to compensate for metabolic demands and
perfusion pressure variations under physiologic and pathologic conditions.25' 26 Dynamic
autoregulation reflects the ability of the cerebral microvasculature to control perfusion by
adjusting the small-vessel resistances in response to beat-to-beat blood pressure (BP)
fluctuations by involving myogenic and neurogenic regulation. Reliable and noninvasive
assessment of cerebral autoregulation (CA) is a major challenge in medical diagnostics.
Transcranial Doppler ultrasound (TCD) enables assessment of dynamic CA during
interventions with sudden systemic BP changes induced by the Valsalva maneuver (VM),
head-up tilt and sit-to-stand test in various medical conditions.13: 2634 Conventional
approaches typically model cerebral regulation using mathematical models of a linear and
time-invariant system to simulate the dynamics of BP as an input to the system, and cerebral
blood flow as output. A transfer function is typically used to explore the relationship
between BP and cerebral blood flow velocity (BFV) by calculating gain and phase shift
between the BP and BFV power spectra.26: 35740 Many studies have shown that transfer
function can identify alterations in BP-BFV relationship under pathologic conditions such as
stroke, hypertension, and traumatic brain injuries that are associated with impaired
autoregulation. 26 35-39 41743 Thjs Fourier transform based approach, however, assumed
that signals are composed of superimposed sinusoidal oscillations of constant amplitude and
period at a pre-determined frequency range. This assumption puts an unavoidable limitation
on the reliability and application of the method, because BP and BFV signals recorded in
clinical settings are often nonstationary and are modulated by nonlinearly interacting
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processes at multiple time-scales corresponding to the beat-to-beat systolic pressure,
respiration, spontaneous BP fluctuations, and those induced by interventions.

To overcome problems in CA evaluations related to nonstationarity and nonlinearity, several
approaches derived from concepts and methods of nonlinear dynamics have been proposed.
13716 44747 A novel computational method called multimodal pressure-flow (MMPF)
analysis was recently developed to study the BP-BFV relationship during the Valsalva
maneuver (VM).13 The MMPF method enables evaluation of autoregulatory dynamics
based on instantaneous phase analysis of BP and BFV oscillations induced by the
intervention (a sudden reduction of BP and BFV followed by an increase in both signals).
The MMPF applies an empirical mode decomposition (EMD) algorithm to decompose
complex BP and BFV signals into multiple empirical modes.21 Each mode represents a
frequency-amplitude modulation in a narrow frequency band that can be related to a specific
physiologic process. For example, this technique can easily identify BP and BFV
oscillations induced by the VM (0.1-0.03 Hz, i.e., period ~10 to 30 sec). Using this method;
a characteristic phase lag between BFV and BP fluctuations corresponding to VM was found
in healthy subjects, and this phase lag was reduced in patients with hypertension and stroke.
13 These findings suggested that BFV-BP phase lag could serve as an index of CA.
However, intervention procedures, such as the VM, introduce large intracranial pressure
fluctuations and also require patients’ active participation. As a result, such procedures are
not applicable under various clinical conditions, such as in acute care settings.

It has been hypothesized that CA can be evaluated from spontaneous BP-BFV fluctuations
during resting conditions.14716 This hypothesis has been motivated by the facts that i) CA is
a continuous dynamic process so that it should always engage to regulate cerebral blood
flow; and ii) BP and BFV display spontaneous fluctuations at different time scales38+ 39
48750 even during resting conditions. Since spontaneous BP and BFV fluctuations can be
entrained by respiration or other external perturbation over a wide frequency range [0.05-0.4
Hz] 51 52 and the dominant frequency of spontaneous BP fluctuations varies among
individuals over time and under different test conditions, reliable measures of the nonlinear
BFV-BP relationship without pre-assuming oscillation frequencies and waveform shapes are
needed. These requirements are well satisfied by the MMPF algorithm which extracts
intrinsic BP and BFV oscillations embedded in the original signals and quantifies
instantaneous phase relationship between them. If the MMPF is sensitive and can provide
reliable estimation of autoregulation using spontaneous BP and BFV fluctuations, it is
expected that, similar to BP and BFV oscillations introduced by the VM, spontaneous BFV
and BP oscillations during resting conditions should also exhibit specific phase shifts.

In this review, we present an overview of the transfer function analysis (TFA) that was
traditionally used to quantify CA (Sec. 11) and of the MMPF method and its modifications
(Sec. ). In Sec. 1V, we introduce a newly developed automatic algorithm for the improved
MMPF method as well as engineering aspects that will potentially lead to a fully automated
analysis without expert input. In Sec. V, we review previous applications of MMPF in
clinical studies, 1> 16 in which the ability and reliability of the method in assessing the CA
from spontaneous BP-BFV fluctuations during resting conditions were evaluated (Sec. V).
Specifically, we discuss the MMPF results in three pathological conditions that are
associated with cardiovascular complications affecting cerebrovascular control systems
(stroke, hypertension and diabetes). ®3-57 Our previous studies have shown altered CA in
these conditions.15+ 16 98 Additionally, a comparison of the MMPF and the TFA results in
the study of type 2 diabetes was discussed. In Sec. VI, we discuss why nonlinear dynamic
approaches such as the MMPF can more reliably quantify nonlinear relationship between
nonstationary signals.
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Il. Transfer Function Analysis

Transfer function analysis which has been widely used in the CA assessment 35: %9 is based
on Fourier transform. BP and BFV signals are decomposed into multiple sinusoidal
waveforms in order to compare the amplitudes and phases of BP and BFV components at
different frequencies. The coherence representing the degree of similarity in the variation
(phase or amplitude) of two signals within specific frequencies, then, can be evaluated
through the cross-spectrum. In general, a strong coherence indicates dysfunction of CA.

The BP and BFV time series are first linearly detrended and divided into 5000- point (100-
sec) segments with 50% overlap. The Fourier transform of BP, denoted as Sp(f) , and BFV,
denoted as Sy(f) , are calculated for each segment with a spectral resolution of 0.01Hz, and
were used to calculate the transfer function

H(f)= MZG(JC)QMU)

|Sp(f)|- (1)

where Sy"(f) is the conjugate of Sy(f); |S|O(f)|2 is the power spectrum density of BP; G(f)=|
H(f)| is the transfer function amplitude (gain); and ¢(f) is the transfer function phase at a
specific frequency f. The amplitude and the phase of the transfer function reflect the linear
amplitude and time relationship between the two signals. The reliability of these linear
relationships can be evaluated by C(f), coherence that ranges from 0 to 1:

_ s, ns: I
s, (OIS ®

A coherence value close to 0 indicates the lack of linear relationship between BP and BFV
signals and, therefore, the linear relationship between BP and BFV estimated by the transfer
function is not reliable. The absence of linear relationship between BP and BFV is usually
assumed to reflect the nonlinear influence of CA.

Average coherence, gain, and phase are calculated in the frequency range below 0.07Hz in
which the CA is assumed to be most effective 3% 39, For comparison with the MMPF
results, the same transfer function analysis is also performed in the same frequency range as
the observed dominant spontaneous oscillations in BP and BFV.

[1l. Multimodal Pressure-Flow Method

The main concept of the MMPF method is to quantify nonlinear BP-BFV relationship by
concentrating on intrinsic components of BP and BFV signals that have simplified temporal
structures but still can reflect nonlinear interactions between two physiologic variables. The
MMPF method includes four major steps: 1) decomposition of each signal (BP and BFV)
into multiple empirical modes; 2) selection of empirical modes for (dominant) oscillations in
BP and corresponding oscillations in BFV; 3) calculation of instantaneous phases of
extracted BP and BFV oscillations; and 4) calculation of biomarker(s) of CA based on BP-
BFV phase relationship.

The improved MMPF method provides a more reliable estimation of BP-BFV phase
relationship by implementing a noise assisted EMD, called ensemble EMD (EEMD)®, to
extract oscillations embedded in nonstationary BP and BFV signals. The EEMD technique
can ensure that each component does not consist of oscillations at dramatically disparate
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scales, and that different components are locally non-overlapping in the frequency domain.
Thus, each component obtained from the EEMD may better represent fluctuations
corresponding to a specific physiologic process. To demonstrate such an advantage of the
EEMD, we will apply the method to extract dominant spontaneous BP-BFV oscillations
during baseline resting conditions, and compare the results to those obtained from the
traditional EMD method.

A. Empirical mode decomposition

To achieve the first major step of MMPF, we originally utilized the empirical mode
decomposition (EMD) algorithm, developed by Huang et al. 2! to decompose the
nonstationary BP and BFV signals into multiple empirical modes, called intrinsic mode
functions (IMFs). Each IMF represents a frequency-amplitude modulation in a narrow band
that can be related to a specific physiologic process 21,

For a time series x(t) with at least 2 extremes, the EMD uses a sifting procedure to extract
IMFs one by one from the smallest scale to the largest scale

x(t) = ci(D+r(D)
= ci(D)tea(D)+r (D)
= ci(O+ea()+ -~ +eu(h) )

Where c(t) is the k-th IMF component and r(t) is the residual after extracting the first k

IMF components

k

ci(h}
=1

i-

ie. m(H=x(t) — ) ) )
Briefly, the extraction of the k-th IMF includes

the following steps:

Vi.

Initialize ho(t)=hj—1(t)=r-1(t) (if k=1, ho(t)=x(t)), where i=1;
Extract local minima/maxima of hj_1(t) (if the total number of minima and maxima
is less than 2, ci(t)= hj—1(t) and stop the whole EMD process);

Obtain upper envelope (from maxima) and lower envelope (from minima)
functions p(t) and v(t) by interpolating local minima and maxima of hj_1(t),
respectively;

H+v(1)
Calculate hi(D=hi_1(f) — »( )2\( );

pD+(D).
2 il

If SD is small enough (less than a chosen threshold SD max, typically between 0.2

and 0.3) 21, the k-th IMF component is assigned as ¢y (t) = hj(t) and ry (t) = r_1(t)

— ¢y (t); Otherwise repeat steps (ii) to (v) for i+1 until SD<SDmax.

Calculate the standard deviation (SD) of

The above procedure is repeated to obtain different IMFs at different scales until there are
less than 2 minima or maxima in a residual rg—1(t) which will be assigned as the last IMF
(see the step ii above).

B. Ensemble Empirical Mode Decomposition (EEMD)

For signals with intermittent oscillations, one essential problem of the EMD algorithm is
that an intrinsic mode could comprise of oscillations with very different wavelengths at
different temporal locations (i.e., mode mixing). The problem can cause certain
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complications for our analysis, making the results less reliable. To overcome the mode
mixing problem, a noise assisted EMD algorithm, namely the Ensemble Empirical Mode
Decomposition (EEMD), has been proposed 9. The EEMD algorithm first generates an
ensemble of data sets obtained by adding different realizations of white noise to the original
data. Then, the EMD analysis is applied to these new data sets. Finally, the ensemble
average of the corresponding intrinsic mode functions from different decompositions is
calculated as the final result. Shortly, for a time series ) x(t), the EEMD includes the
following steps:

i.  Generate a new signal y(t) by superposing to x(t) to a randomly generated white
noise with amplitude equal to certain ratio of the standard deviation of x(t)
(applying noise with larger amplitude requires more realizations of
decompositions)

ii. Perform the EMD on y(t) to obtain intrinsic mode functions;

iii. Iterate steps (i)—(ii) m times with different white noise to obtain an ensemble of
intrinsic mode function (IMFs)

{ee . k=1.2. ) e (0. k=1.2.on) L (™ (0.k=1.2. . n);

iv. Calculate the average of intrinsic mode functions
l m
(1), k=1,2, here ci(f)=— ) c}(t
{ex® n)  where (1) m;q( )
The last two steps are applied to reduce noise level and to ensure that the obtained IMFs
reflect the true oscillations in the original time series x(t). In this study, we repeats
decomposition m times (m>=200) to make sure the noise is reduced to negligible level.

To illustrate the mode mixing problem, we applied both EMD and EEMD to BP signal of a
healthy subject. Figure 1 shows the results of the EMD. The left-side panels of Fig. 1 show
the original BP signal (the top plot) and the decomposed IMFs (modes 9-5 from the second
to the bottom plots). For each plotted signal on the left side of Fig. 1, the corresponding
short-time Fourier transform (STFT) spectrogram was obtained by applying Fourier
transform in overlapped Gaussian sliding windows (the window size is 40 seconds and 2
second shift between two successive windows), and was plotted using color mapping on the
right side of Fig. 1. As shown in the rectangle area of the STFT spectrograms of raw BP
signals (marked using white line, the top panel of the right side in Fig. 1), the instantaneous
frequency of spontaneous oscillation entrained by the respiration is time dependent over the
range of 0.18~0.3Hz. Both mode 5 and mode 6 IMFs from the EMD contain parts of
respiration induced oscillations in BP at different time, i.e., no single IMF mode can reflect
respiration influence consistently throughout the entire time series. In contrast, as shown in
Fig. 2, the mode 7 IMF from the EEMD can fully represent the respiratory oscillations in
BP, as indicated by the same STFT spectrogram of the IMF as the original BP signals in the
frequency range of 0.18-0.3Hz. Using the EEMD, we also extracted the respiration induced
oscillations in the simultaneously recorded BFV signal of the same subject (Mode 7 IMF in
Fig. 3).

As shown in our simulation, EEMD ensures the decompositions to compass the range of
possible solutions in the sifting process and to collate the signals of different scales in the
proper IMF naturally. It produces a set of IMFs, each displaying a time-frequency
distribution without transitional gaps. With the elimination of the mode mixing problem, the
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EEMD can better extract intrinsic mode(s) corresponding to specific physiologic
mechanisms.

C. Mode selection

The second step of the MMPF is to choose an IMF for the BP and the corresponding IMF
for the BFV signal. The choice seems rather subjective and any mode within the interested
frequency range can be used. The following criteria are proposed for this step in order to
improve reliability and robustness of MMPF results. The most important one is to ensure
that the two chosen IMFs are matched, i.e., the extracted fluctuations in BP and BFV
correspond to the same physiologic process. In addition, it is better to choose BP component
that has reproducible patterns to minimize variability among different trials. For example,
the initial MMPF study used the BP and BFV oscillations induced by interventions such as
VM 13, and recent studies used the spontaneous BP and BFV oscillations entrained by
respiration.15 18 We will discuss these applications of the MMPF and its performance in
Sec. IV.

D. Hilbert transform

The third major step of the MMPF analysis is to obtain instantaneous phases of the extracted
BP and BFV oscillations (i.e. the IMFs correspond to specific physiology process). Note that
the extracted BP and BFV oscillations are not stationary, i.e., their amplitude and frequency
vary over time. Such nonstationary oscillations can be better characterized by analytical
methods that can quantify the amplitude and phase (or frequency) at any given moment.
Therefore, the MMPF uses Hilbert transform to obtain instantaneous phases of BP and BFV
oscillation. Unlike the Fourier transform, Hilbert transform does not assume that signals are
composed of superimposed sinusoidal oscillations with constant amplitude and frequency.
Thus, the instantaneous phases obtained from Hilbert transform are more suitable for the
assessment of the nonlinear relationship between complex oscillations 1.

In order to obtain instantaneous phases with appropriate physical meaning, Hilbert transform
requires that an oscillatory signal should be symmetric with respect to the local zero mean
and the numbers of zero crossings and extreme should be the same. The intrinsic mode
function derived from the EMD method satisfies this requirement (see Sec. Il A). For a time
series s(t) its Hilbert transform is defined as

1 .
A S(t) 5.5
s(t)—ﬂP [t @

Where P denotes the Cauchy principal value. Hilbert transform has an apparent physical
meaning in Fourier space: for any positive (negative) frequency f, the Fourier component of
the Hilbert transform s(t) at this frequency f can be obtained from the Fourier component of
the original signal s(t) at the same frequency f after a 90° clockwise (anticlockwise) rotation
in the complex plane, e.g., if the original signal is cos(wt), its Hilbert transform will become
cos(ot—90°)=sin(wt). For any signal s(t), the corresponding analytic signal can be
constructed using its Hilbert transform and the original signal:

S(1) = s()+i5(H)=A(r)e'¢?” .

Where A(t) and ¢(t) are the instantaneous amplitude and instantaneous phase of s(t),
respectively.

EURASIP J Adv Signal Process. Author manuscript; available in PMC 2008 August 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Loetal.

Page 8

In particular, the instantaneous BP and BFV phases are calculated on a sample by sample
basis. The BP-BFV phase shift for each subject is calculated as the average of instantaneous
differences of BFV and BP phases over the entire baseline. The instantaneous BP-BFV
phase shift is averaged over a prolonged time period to provide statistically robust phase
estimates.

E. MMPF autoregulation indices

The last step of the MMPF is to derive indices of CA from the instantaneous phases of BP
and BFV oscillations. It is believed that CA leads to fast recovery of BFV in response to BP
fluctuations and, thus, the phases of BFV oscillations are advanced compared to BP phases.
For simplicity of statistical analysis, originally the phase shift at the minimum and
maximum of these two signals is used as the index of CA 13. To provide statistically more
robust phase estimates, the BP-BFV phase shift for each subject can be calculated as the
average of instantaneous differences of BFV and BP phases over the course of the VM or
spontaneous oscillations.16

IV. Computer-Assisted Program for MMPF Analysis

To implement steps C-E in the MMPF analysis, a software package was developed to load
the decomposed intrinsic modes of BP and BFV signals, to allow the selections of BP and
BFV components, and to calculate the MMPF autoregulation index (Fig. 4). In previous
version of the MMPF software, the selection of BP and BFV components had been done
manually, i.e., a researcher will pick an intrinsic mode after visualizing all components
decomposed by the EMD or EEMD. The manual selection is useful, but it requires fully
understanding the MMPF algorithm and all technical details of the program execution.
Moreover, the manual selection needs human inputs and it is time consuming. Therefore, the
best solution would be to enable a program-based automatic selection according to the
defined criteria for mode selection, described in Sec. Il C. As a first step to achieve this
goal, we have designed a computer-assisted program to select the respiratory-modulated
oscillation from the decomposed IMF modes. In this program, the STFT spectrogram
analysis, a well-known method of time frequency analysis, is performed for all decomposed
modes (right panel of Fig. 2 and Fig. 3). For each mode, the instantaneous mean frequency
for each sliding window is obtained. The IMF with the mean frequency oscillating mostly in
a selected frequency range (e.g., 0.1~0.4 Hz for spontaneous oscillations during baseline
conditions) is automatically picked as the default mode to be used for the assessment of
autoregulation. With the illustrated spectrograms, the default mode can also be manually
verified or modified to ensure that the automated selection is appropriate. The same
procedure is used to obtain both spontaneous oscillations in BP and the corresponding
oscillations in BFV. Finally, the instantaneous BP and BFV phases are calculated using
Hilbert transform on a sample by sample basis. The instantaneous BP-BFV phase shift for
each subject is averaged over 5 minutes and is used as an index of the dynamic CA.

V. Performance of Improved MMPF

A. Assessment of autoregulation in healthy control, hypertensive and stroke subjects
during resting condition

To test whether the MMPF can evaluate the dynamics of CA from spontaneous BP-BFV
fluctuations during supine rest, our recent study compared the BP-BFV phase shifts obtained
from BP and BFV oscillations introduced by the VM and from spontaneous BP-BFV
oscillations during supine baseline.1® Data of 12 control, 10 hypertensive and 10 stroke
subjects during VM and baseline resting condition were analyzed using the improved
MMPF method. Spontaneous oscillations (period: mean+SD, 15.7£9.2 seconds) in the same
frequency range as the VM oscillations (17.7£7.9 seconds, pair t-test p=0.37) were chosen.
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BP-BFV phase shifts during spontaneous oscillations (ranging from ~—60 to 120 degrees)
were highly correlated to those obtained from VM oscillations (left side middle cerebral
arteries R=0.92, p<0.0001; right side R=0.80, p<0.0001) (Figure 5). Consistently, the
paired-t test showed that the average BP-BFV phase shifts during baseline were statistically
the same as the values during the VM (p>0.47). These results indicate that the MMPF
method can enable reliable assessment of CA dynamics and its impairment under pathologic
conditions using spontaneous BP-BFV fluctuations.

B. Measurement of cerebral autoregulation dynamics based on spontaneous oscillations
entrained by respirations in diabetic subjects

In our recent study 16, the MMPF method was applied to study the relationship between
spontaneous BP-BFV oscillations at the respiratory frequency (~0.1-0.4Hz) in healthy
(control) and diabetic subjects. The results showed that in healthy subjects, there were also
specific phase shifts between spontaneous BP and BFV oscillations over this frequency
range (0.1-0.4Hz) and that the phase shifts were significantly reduced in patients with type 2
diabetes, indicating altered dynamics of BP-BFV relationship, and thus impairment of
vasoregulation in diabetic subjects (Fig.6). In contrast, the transfer function analysis was
unable to show any significant group differences of phase shifts between BP and BFV
signals at the frequency <0.07Hz in which CA is traditionally studied, as well as over the
frequency range of 0.1-0.4Hz (see Table 1). The sensitivity and specificity of the MMPF
and transfer function measures were compared using receiver operating characteristic (ROC)
analysis 82 by comparing the areas under the ROC curves (AUC) between the control and
diabetes groups. The ROC analysis showed that the AUC of MMFP-based phase shifts (left:
0.94+0.04; right: 0.87+0.06) are larger than those obtained by applying transfer function
analysis (left: 0.56+0.09, p<0.001; right: 0.56+0.09, p=0.003) (Fig. 7), indicating that the
BP-BFV phase shifts may serve as a more sensitive biomarker for the Diabetes Mellitus
(DM) group than the traditional transfer function phase.

VI. Discussion & Conclusion

Assessment of Nonlinear Interactions between Nonstationary Signals

Quantification of nonlinear interactions between two nonstationary signals presents a
computational challenge in different research fields, especially for assessments of
physiological systems. The computational approaches, based on traditional theories and
methods, cannot resolve nonstationarity-related issues and be used reliably to study these
systems. One possible and promising approach is to utilize and adopt concepts and methods
derived from nonlinear dynamics that are designed to explore nonlinear interactions in
nonstationary systems. In the last two decades, nonlinear dynamic approaches have been
applied in many different biological fields such as cardiovascular system, respiration,
locomotor activity, and neuronal activity in brain 11 14: 63:54, It has been gradually
accepted that nonlinear dynamic methods can provide new information about the control
mechanisms of physiological systems that may be difficult to be characterized using
traditional approaches. In this review, we aim to demonstrate the point by discussing recent
advance in the field of cerebral blood flow regulation and the contribution of a nonlinear
dynamic approach as represented by the multimodal pressure flow method (as discussed in
the following sections). Though the MMPF method has been mainly applied to assess the
cerebral autoregulation, the concept of this approach is generally applicable for other
physiological controls that involve interactions between two nonstationary signals.
Designing and improving these approaches is crucial to tackle the generic problem related to
nonstationarity.
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Assessment of autoregulation from spontaneous BP and BFV oscillations

Autoregulatory responses are assessed by challenging cerebrovascular systems using
interventions such as the VM, thigh cuff deflation and the head-up tilt 26731+ 65. However,
these intervention procedures may introduce large intracranial pressure fluctuations and
require patients’ active cooperation. Therefore, they are not generally applicable in acute
care clinical settings. In recent studies, an improved MMPF method was introduced to
quantify the BP-BFV relationship in healthy, hypertensive and stroke subjects during supine
resting conditions!®. The results support the notion that autoregulation is a dynamic process
and is always engaged even during resting conditions. Dynamic autoregulation is needed for
continuous adjustment of cerebral perfusion in response to variations of autonomic
cardiovascular and respiratory control (e.g., respiration, heart rate, blood pressure, vascular
tone). Furthermore, applying the method to healthy and diabetic subjects, we showed that
cerebral vasoregulatory processes that control pressure-flow relationship can operate at
shorter time-scales (<10 seconds) than previously suggested (Fig. 6).

In this review we also introduced new results that present a significant improvement of
MMPF method by introducing an automated mode selection algorithm that is based on
time—frequency analysis. This approach allows objective mode selection based on time-
frequency measures. Thus, the MMPF software is now more user-friendly and does not
require computational knowledge to implement the MMPF technique for clinical
evaluations.

Unlike traditional Fourier transform based approaches, the MMPF method does not assume
the BP and BFV as superimposed sinusoidal oscillations of constant amplitude and period at
a preset frequency range. Instead, the method adopts a new adaptive signal processing
algorithm, EEMD, to extract dominant spontaneous oscillations that are actually embedded
in the BP and BFV fluctuations. Since spontaneous oscillations that are related to a specific
physiology process are usually nonstationary (i.e., statistical properties such as mean levels
and oscillation period vary over time and change for different subjects), the conventional
filters that are based on Fourier or wavelet theories are not reliable or valid for the extraction
of embedded spontaneous oscillation from the BP and BFV signals. In this paper, we
demonstrated that the EEMD can accurately extract oscillations associated with respirations
from nonstationary BP and BFV signals. This result indicates that the EEMD can serve as a
blind time-variant filter to extract the embedded nonstationary oscillations adaptively.
Studying spontaneous BP and BFV oscillations extracted by the EEMD method revealed
advanced phases in BFV compared to those in BP, i.e., flow oscillations preceded systemic
pressure oscillations. These BP-BFV phase shifts were similar to those observed during the
VM at the BP minimum and maximum 13, Such positive phase shift has also been reported
using Fourier transform methods during head-up tilt, and is interpreted as the faster recovery
of BFV caused by the compensation of cerebral vasoregulation.30 In our study, we showed
that BP-BFV phase shifts of spontaneous oscillation for hypertensive, stroke subjects were
significantly reduced when compared to healthy subjects as shown by previous studies
during the VM. 13 Therefore, the BP-BFV phase shifts derived from the spontaneous
oscillations can also be used as the indicator of dynamic CA.

Frequency dependence of cerebral autoregulation

It has been proposed that autoregulatory mechanisms act as a highpass filter—cybernetic
model,35: 37 being more active at lower frequencies (<0.1Hz) and less effective for faster
spontaneous fluctuations and at respiration frequency. Though there is no established
physiologic neural pathway that can account for the highpass filter mechanism, the
frequency dependent influence of CA has been supported by many studies that are based on
the transfer function analysis.39: 40+ 42+ 66 It is important to note that coherence, gain, and
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phase of transfer function are continuous functions of frequency and do not exhibit an
apparent transition point at a specific frequency. Thus, the frequency-dependent influence of
CA, as suggested by the model and transfer function results, does not indicate a cutoff
frequency beyond which CA has no influence on blood flow regulation. Nevertheless, many
studies used ~0.1Hz as an upper frequency boundary for the transfer function analysis, such
choice of frequency range for the estimation of CA seems rather arbitrary. Since previous
studies showed that blood flow level after induced sudden blood reduction can be restored
within 3-6 seconds (corresponding to 0.16-0.33Hz in frequency domain),5”+ 68 there is no
reason to refute that CA can modulate the relationship of BP and BFV at frequencies faster
than 0.1Hz. Indeed, there were already studies indicating that BP and BFV oscillations at
frequencies faster than 0.1Hz may also provide useful information on CA.14» 69

Moreover, the transfer function analysis is based on Fourier transform that implicitly
assumes stationary signals composed of sinusoidal oscillations of constant amplitude and
period. However, real-world recordings, such as BP and BFV signals, are usually
nonstationary and exhibit dynamic changes over time (e.g. shifts of respiratory frequencies,
occurrence of spontaneous waves, etc). Therefore, a single transfer function may not be
sensitive enough to identify the influences of CA on relationship between the BP and BFV
oscillations at all time scales.

It is intriguing that the MMPF analysis revealed a specific phase shift between BP and BFV
oscillation in the frequency range of ~0.1-0.4Hz in control subjects, and this phase shift was
significantly reduced in diabetic subjects. These findings strongly support that CA is a
continuous dynamic process, influencing BP-BFV relationship over a frequency range
(>0.1Hz) that is beyond previously ranges recognized. However, transfer function analysis
could not identify this alteration in BP-BFV phase relationship in diabetic subjects in this
frequency range, suggesting that inherent nonlinearities of CA may be better described by
nonlinear methods such as the MMPF and multivariate coherence—an approach that takes
into account contributions of other inputs, e.g., pressure and cerebrovascular resistances.*6

Comparison of the MMPF method and traditional CA approaches

The observation that transfer function analysis (TFA) cannot, but the MMPF can, show
difference in phase relation between systemic BP and BFV in type 2 diabetes, may lead to
following explanations: 1) TFA quantifies pressure and flow relationship in a specific
frequency range , while MMPF is not frequency dependent. Therefore, these two methods
may quantify different aspects of underlying mechanisms responsible for blood flow
regulation. 2) Sensitivities of these two methods are different so that their performances in a
small sample size of subjects can be different. As shown by previous studies, both TFA and
MMPF can identify alterations in blood flow regulation in pathologic conditions such as
stroke, hypertension, and traumatic brain injuries that are associated with impaired
autoregulation. These findings indicate that both methods can quantify CA using BP and
cerebral BFV, but do not explain different results in diabetic patients. The second possibility
comes from the fact that TFA usually focuses on the frequencies below 0.1Hz while MMPF
does not assume frequency range, i.e., MMPF extracted dominant oscillations that are truly
embedded in data. Thus, the optimal frequency range to distinguish the difference between
controls and diabetics in blood pressure and blood flow relationship is not known. In this
study, we found that there were no group differences in TFA results in the frequency range
0.01-0.07 Hz (in which CA was traditionally believed to affect pressure and flow
relationship). The frequency of dominant oscillations in blood pressure and flow extracted
by MMPF was from 0.1 to 0.4Hz. However, BP-BFV phase obtained from TFA for the
frequency range 0.1-0.4 Hz showed no difference between controls and diabetic subjects,
either (see Table 1). This finding refutes the notion that the differences in results detected by
TFA and MMPF are merely due to differences in frequency range. Therefore, the
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differences in sensitivity of both methods offer explanation for discrepancy in the CA
estimates in diabetic patients. Consistently, we found that the BP-BFV phase shift had a
better performance in discriminating between control subjects and subjects with type 2
diabetes (Fig. 7). The different results obtained from the two analyses may not be surprising
because the BP-BFV phase shifts of transfer function analysis are based on the Fourier
transform which is not applicable to nonstationary BP and BFV signals and nonlinear BP-
BFV relationship. Comparisons of the MMPF and the TFA performance was done only
using data obtained from patients with type 2 diabetes. It would be desirable to further
establish reliability and repeatability of these methods in other pathological conditions that
are known to impair cerebral autoregulation.

This review was focused on the MMPF method. There are other approaches from nonlinear
dynamics such as phase synchronization technique,1* multiple multivariate coherence 46,
and general Volterra-Wiener approaches 44 4% 47 that have been used to quantify cerebral
autoregulation but could not be covered in this short review. More systematic studies are
necessary to evaluate advantages and disadvantages of these innovative methods during
different physiological and pathological conditions.

In conclusion, CA dynamics can be reliably estimated from spontaneous BP and BFV
fluctuations during baseline resting conditions, and the BFV-BP phase shift obtained by the
improved MMPF method is a sensitive and reliable measure of blood flow regulation and
can be potentially used to monitor autoregulation in subjects with cerebromiscrovascular
diseases
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MMPF Multimodal Pressure Flow method
EMD empirical mode decomposition

EEMD ensemble empirical mode decomposition
IMF intrinsic mode functions

BP blood pressure

BFV blood flow velocity

VM Valsalva maneuver

TCD transcranial Doppler

CA cerebral autoregulation
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Figure 1.

(Left Panel) A raw BP signal and its decomposed empirical modes (i.e., cs—Cg components
from bottom to top) obtained by the EMD method. (Right Panel) The corresponding short-
time Fourier transform (STFT) spectrograms of the signals in Left Panel. The spectrogram
was obtained using Gaussian sliding window with time duration of 40 seconds, shifted 2
seconds between successive evaluations and then plotted using color map.
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(Left Panel) The same BP signal as shown in Fig. 1 and its decomposed empirical modes

(i.e., cgs—cg components from bottom to top) obtained by the EEMD method. (Right Panel)
The corresponding short-time Fourier transform (STFT) spectrograms of the signals in Left
Panel. The spectrograms were calculated and plotted using the same procedure discussed in

Fig. 1. The noise ratio for EEMD method is 0.2.
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Figure 3.

(Left Panel) A raw BFV signal and its decomposed empirical modes (i.e., cs—Cg
components from bottom to top) obtained by the EEMD method. (Right Panel) The
corresponding short-time Fourier transform (STFT) spectrograms of the signals in Left
Panel. The spectrograms were calculated and plotted using the same procedure discussed in
Fig. 1. The noise ratio for EEMD method is 0.2.
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Screen copy of the MMPF analysis software (adapted from Ref. 15). The data shown in this
plot are from a healthy subject. The top three panels on the left show BFV (left side and
right side) and BP signals, respectively. The colored curves in these panels show the results
after removing faster fluctuations from the original signals. The bottom left panel shows the
corresponding intrinsic modes for these three signals (red: BP; blue: BFV on right side;
green: BFV on left side). The vertical red dashed box (around 40-50 seconds) identifies part
of the VM period. The spontaneous oscillations in these signals during resting conditions
prior to the VM can also be visualized. One of these oscillations (around 14-22 seconds) is
identified by two vertical red lines. The result of the BP-BFV phase shift analysis of this
period is plotted in the right panel. A reference line (dotted black line), indicating
synchronization between BP and BFV, is shown in this panel for easy comparison. The
result is representative of normal autoregulation where BFV leads BP (by about 50 degrees

in phase).
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Figure 5.

Comparison of the BP-BFV phase shift during two different conditions and between control,
hypertensive (HTN), and stroke groups. (A-B) (adapted from Ref. 15). For each subject in
this study, BP-BFV phase shifts for left (A) and right (B) side middle cerebral arteries
(MCA) were measured during the Valsalva maneuver (VM) and during supine baseline
conditions. The straight line is the linear regression fit of the data. The phase shifts during
VM and baseline showed a strong correlation (left R=0.92, p<0.0001; right R=0.8,
p<0.0001). (C-D). BP-BFV phase shifts during VM were smaller in hypertensive and stroke
groups than in control group in both left and right MCAs (HTN: left p=0.01, right p=0.02;
Stroke: left p=0.003, right p=0.003).
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Figure 6.

Spontaneous oscillations of blood pressure (BP) and cerebral blood flow velocity (BFV) in
(A) a 72-year-old healthy control woman and (B) a 52-year-old man with type 2 diabetes
during supine baseline. Figure 6A was adapted from Ref. 16. BP, left and right BFVs
(Panels 1 to 3 in A and B) were decomposed into different modes using ensemble empirical
mode decomposition algorithm, each mode corresponding to fluctuations at different time
scale. The components corresponding to respirations at frequency ranging from ~0.1 to
0.4Hz (the forth panels in A and B) were extracted and used for the assessment of BP-BFV
relationship. Instantaneous phases of BP and BFV oscillations (solid lines in the bottom
panels of A and B) were obtained using the Hilbert transform. There were large time/phase
delays in BP oscillations compared to the BFV oscillations. For each subject, the average
BFV-BP phase shift (horizontal dashed lines in bottom panels of A and B) was obtained as
the average of instantaneous BFV-BPV phase shifts during the entire 5-min supine baseline.
(C) Phase shifts between spontaneous oscillations of BP and BFV were much smaller in
diabetes group than in healthy control group (p<0.0001). The group averages of control and
diabetes are shown in blue symbols with error bars as the standard deviations. There was no
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significant difference in phase shifts between left and right blood flow velocities in both
control and diabetes groups.
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Figure 7.

Receiver operating characteristic (ROC) curves for the DM prediction using BP-BFV phase
shifts obtained from the MMPF method and using transfer function phases (0.1-0.4Hz)
(adapted from Ref. 16). The y axis is the sensitivity, representing the percentage of DM
subjects identified; and the x axis is 1-specificity; i.e., the percentage of control subjects that
are incorrectly identified as DM subjects. The areas under the ROC curves (AUC) closer to
1.0 for BP-BFV phase shifts indicates that the MMPF measure serve as a better
discriminator between the control and DM groups than traditional transfer function analysis.
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