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Abstract

Background: This study evaluated the effects of stroke on regulation of cerebral blood flow in
response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult

to assess because of the nonstationarity and nonlinearity of the component signals.

Methods: We studied |15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 + 1.3
years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured

during the Valsalva maneuver (VM) using transcranial Doppler ultrasound.

Results: A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze
these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into
multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The
empirical mode corresponding to the VM BP profile was used to construct the continuous phase
diagram and to identify the minimum and maximum values from the residual BP (BPz) and BFV
(BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase
corresponding to the BPp and BFVy; minimum (maximum) values. BP-BFV phase shifts were
significantly different between groups. In the normotensive group, the BFVy; minimum and
maximum preceded the BPg minimum and maximum, respectively, leading to large positive values

of BP-BFV shifts.

Conclusion: In the stroke and hypertensive groups, the resulting BP-BFV phase shift was
significantly smaller compared to the normotensive group. A standard autoregulation index did not
differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based
on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with

hypertension and after stroke, rendering blood flow dependent on blood pressure.
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Background

Noninvasive assessment of cerebral vasoregulation is a
major challenge in medical diagnostics and post-stroke
care. Dynamic autoregulatory mechanisms adapt cerebral
perfusion to spontaneous variations in intracranial and
systemic pressure within a few heartbeats. Decline of cer-
ebral blood flow that occurs with normal aging is further
potentiated by presence of risk factors for cerebrovascular
disease such as hypertension. Cerebral autoregulation is
damaged by acute stroke, rendering cerebral blood flow
dependent on blood pressure (BP) [1-3]. The duration of
post-stroke autoregulatory impairment and the degree of
recovery after stroke are not known. Stroke is more com-
mon in older subjects, but the consequences of stroke in
younger subjects may last for decades. It is not known if
cerebral autoregulation is impaired in subjects with minor
chronic infarcts and good neurological outcome. This
study, employing a new signal analysis method, addresses
the unresolved issue of whether the dynamics of cerebral
autoregulation are altered in younger subjects with minor
chronic stroke.

Continuous monitoring of BFV using transcranial Dop-
pler ultrasound enables assessment of dynamic autoregu-
lation from spontaneous BP and BFV fluctuations [4], and
during interventions inducing a sudden BP reduction,
such as the VM, thigh cuff deflation, and the sit-to-stand
test [5-7]. The VM induces a sudden increase in intratho-
racic and cerebrospinal fluid pressure that is associated
with rapid declines in BP and BFV. The BFV response to
intracranial pressure changes precedes peripheral BP
responses. The end of straining is followed by a BP
increase ~30 mm Hg above baseline, associated with an
increase in BFV and cerebrovascular resistance [8,9]. BP
and BFV fluctuations evoked by the VM are transient and
highly nonstationary. Rapid changes in vascular tone that
act to adjust perfusion pressure during these fluctuations
may yield a nonlinear pressure/flow relationship. These
short and nonstationary time series present a methodo-
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logical challenge since they are not suitable for analysis
using traditional analytic techniques based on Fourier
transform analysis [4,10] or Volterra-Wiener moving aver-
age modeling [11] which assume signal linearity and
stationarity.

Accordingly, we: 1) introduce a new method, multimodal
pressure flow analysis (MMPF), based on the Hilbert-
Huang transformation [12], to quantify the relationships
between two nonstationary signals; 2) apply the MMPF
method to the assessment of dynamic autoregulation
using the instantaneous BP-BFV phase relationships dur-
ing the VM; 3) compare pressure/flow dynamics in
younger subjects with a minor chronic stroke to that of
normotensive and hypertensive subjects without stroke,
and 4) compare the MMPF method with standard indices
of autoregulation in the stroke and non-stroke groups.

Methods

Subjects

Studies were conducted at the Autonomic Nervous System
Laboratory at the Department of Neurology at The Ohio
State University and at the SAFE (Syncope and Falls in the
Elderly) Laboratory at the Beth Israel Deaconess Medical
Center at Harvard Medical School. All subjects signed
informed consent, approved by the Institutional Review
Boards. Subjects in the stroke and non-stroke groups were
recruited from the Neurology Stroke Service and through
advertisement. Demographic characteristics are summa-
rized in Table 1.

Normotensive group
15 healthy normotensive subjects (age 40.2 + 2.0 years,
mean =+ SE).

Hypertensive group
20 patients with essential hypertension, controlled by
antihypertensive medications (age 49.9 + 2.0 years).

Table I: Demographic characteristics and baseline blood pressure and blood flow velocities in MCAs

Group Normotensive Hypertensive Stroke
Men/Women 9/6 8/12 5/10

Age (yrs) 402 £2.0 499 +£2.0 53.1 + |.6**
Race W/AA 14/1 15/5 14/1

Stroke side, R/L - -- 4/11
Baseline values

mean BP (mm Hg) 842 +22 102.1 £3.0 97.2 + 2.4%k*
mean BFV MCAR (cm/s) 53.1 £34 60.7 £ 3.7 59.5+43
mean BFV MCAL (cm/s) 53.0+43 585+ 35 572 +38
EtCO, (mm Hg) 375+ 1.9 354+ 1.3 362+ I.1

Demographic characteristics, age and baseline values (mean + SE, ** p < 0.003, p < 0.0001), gender and race (W = white, AA = African American)
and the stroke side (R/L = right/left), BP = mean blood pressure, BFV = mean blood flow velocity in the right (MCAR) and left (MCAL) middle

cerebral artery, EtCO, = end tidal carbon dioxide
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Stroke group

15 subjects with the first minor ischemic stroke (18.3 +
4.5 months after acute onset) (age 53.1 + 1.6 years)
including 9 subjects treated for hypertension (stroke-
hypertensive) and 6 subjects who were normotensive
(stroke-normotensive) with no BP treatment. Stroke sub-
jects had a documented infarct on MRI or CT affecting <1/
3 of the vascular territory with a minor neurological defi-
cit (Modified Rankin Score scale <3). The side of the
lesion was determined by neurological evaluation and
confirmed with MRI and CT. The lesion was in the right
hemisphere in 4 and in the left hemisphere in 11 subjects.
The infarct types and locations were as follows: small ves-
sel infarcts in 13 subjects and large vessel infarcts in 2 sub-
jects. Cortical infarcts were found in 10 subjects and
subcortical infarcts in 5 subjects. Normal carotid Doppler
ultrasound study was required for participation. Patients
with hemorrhagic strokes, clinically important cardiac
disease including major arrhythmias, diabetes and any
other systemic illness were excluded. All subjects were
carefully screened with a medical history, physical and
laboratory examination. Subjects with hypertension (with
or without stroke) were treated with antihypertensive
agents from the following categories (diuretics, beta-
adrenergic blockers and angiotensin-converting enzyme
inhibitors). Antihypertensive medications were gradually
tapered over 3 days and discontinued for 3 days prior to
the study. Anticoagulants and other medications that did
not affect cardiovascular or autonomic nervous system
function were allowed.

Experimental protocol

VM

After instructions and several practice sessions, each sub-
ject rested for 5 minutes in the supine position. The sub-
ject was then asked to take a breath and expire forcefully
through a mouthpiece with a small air-leak, maintaining
for 15 seconds a pressure of 40 mm Hg monitored on a
pressure gauge connected to the mouthpiece. All data
were continuously acquired over the 5 minute period dur-
ing which BP returned to baseline. The VM was repeated
twice and the signal showing the more prominent VM
oscillation by visual inspection was selected.

Data acquisition, processing and analysis

The experiments were done in the morning or > 2 hours
after the last meal. The electrocardiogram was measured
from a modified standard lead II or III using a Spacelab
Monitor (SpaceLab Medical Inc., Issaquah, WA). Beat-to-
beat BP was recorded from a finger with a Finapres device
(Ohmeda Monitoring Systems, Englewood CO), which is
based on a photoplethysmographic volume clamp
method. During the study protocol, BP was verified by
arterial tonometry. With finger position at the heart level
and temperature kept constant, the Finapres device can
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reliably track intraarterial BP changes over prolonged peri-
ods of time [13]. Respiratory waveforms were measured
with a nasal thermistor. CO, was measured from a mask
using an infrared end tidal volume CO, monitor (Datex
Ohmeda, Madison WI). The right and left MCAs were
insonated from the temporal windows, by placing the 2-
MHz probe in the temporal area above the zygomatic arch
using a transcranial Doppler ultrasonography system
(MultiDop X4, DWL Neuroscan Inc, Sterling, VA). Each
probe was positioned to record the maximal BFV and
fixed at a desired angle using a three-dimensional posi-
tioning system attached to the light-metal probe holder.
Special attention was given to stabilize the probes, since
their steady position is crucial for reliable, continuous
BFV recordings. BFV and all cardiovascular analog signals
were continuously acquired at 200 Hz and exported at 50
Hz for off-line post-processing. Data were visually
inspected and occasional extrasystoles and outlier data
points were removed using linear interpolation. Fourier
transform of the Doppler shift (the difference between the
frequency of the emitted signal and its echo (frequency of
reflected signal) was used to calculate BFV. BFVs in the
MCA correlate with invasive measurements of blood flow
with xenon clearance [14], laser Doppler flux [15] and
positron emission tomography [16]. Since MCA diameter
is relatively constant under physiological conditions, BFV
can be used for blood flow estimates [17].

Multimodal pressure-flow method

To quantify the dependency between cerebral blood flow
and systemic pressure, we developed a novel computa-
tional procedure, called multimodal pressure-flow
(MMPF) analysis. The MMPF analysis implemented the
Hilbert-Huang transformation [12] technique to measure
the coupling between two nonstationary signals. This
method was motivated by the fact that the original BP and
BFV signals are recorded over time. However, different
subjects vary in the amount of time spent in each stage of
the VM. Therefore, it is essential to find an alternative
coordinate system for both BP and BFV signals that allows
for a meaningful, non-time dependent cross referencing
of these two signals. Since the complete VM cycle can be
treated as a full cycle of BP oscillation, the oscillatory
phase of the BP modulation during the VM can serve as
such a useful coordinate system.

To implement this approach, we first need to calculate
how BP phase changes as a function of time. Then we can
map the original time-varying BP and BFV signals to the
new axis of reference, namely BP oscillatory phase. To pre-
cisely calculate the BP phase, we need to extract the char-
acteristic (dominant) BP oscillation induced by the VM.
We applied the empirical mode decomposition (EMD)
technique developed by Huang et al. [12] The EMD algo-
rithm decomposes complex signals such as BP and BFV
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into multiple empirical modes. Each mode represents the
frequency-amplitude modulation at a specific time scale.
Figure 1A shows the original BP waveform, which is mod-
ulated by multiple frequencies corresponding to the systo-
lic peak, dicrotic notch, heart rate, respiratory frequency
and BP fluctuations induced by the VM. Figure 1B shows
the decomposed empirical modes (1-10) of the original
BP signal. Empirical modes 1-5, corresponding to the
faster frequencies, were removed from the signal. The
remaining lower frequency BP signal, termed the "residual
BP" or BPy (shown as thick curve in Figure 1A), was used
to identify the maximum and minimum values during the
VM. The empirical mode best representing the dominant
BP profile during the VM, denoted as BPy,, (mode 6 in this
example, plotted as the thick line in Figure 1B), was visu-
ally identified and used for subsequent phase analysis. We
followed the same procedure to obtain the residual BFV
signal, denoted as BFV,.

In the next step of the MMPF analysis, we applied the
Hilbert transform to the BPy,, signal to calculate its instan-
taneous phases. This phase was then used as a reference
coordinate both for BP and BFV signals. From this point
on, the term phase refers to the phase of the BPy,, oscilla-
tion during the VM. Unlike the Fourier transform, the
Hilbert transform does not assume that signals are com-
posed of superimposed sinusoidal oscillations of constant
amplitude and frequency. Real-world biological fluctua-
tions, such as BP and BFV, are not stationary and are better
described by analytical methods that can quantify varia-
tions of amplitude and frequency.

Mathematically, the first two steps of the MMPF algorithm
can be summarized in the following way: Any complex
signal s(t) can be represented as the superimposition of
more basic (simpler) components: S(¢) = %, S, (t), where
S, are empirical modes that fulfill certain criteria of the
original signal [12]. For each empirical mode, its Hilbert
transform is defined as:

1 Sk (t’)

Sp(t) = =[——at’

(0=

where the Cauchy principal value is taken in the integral.

Instantaneous amplitude, A, (t), and instantaneous phase,
@, (t), can be calculated by

Ap(0) =St (1) +SE(t) and @, (1) =tan ™ (S (£)/ S (1))-

The BPy,, profile from the first peak at the beginning of
the VM to the subsequent BP,, maximum forms a com-
plete phase cycle from 0-360° over 30-40 seconds. We
assigned the first peak at the beginning of the VM to phase
0°, the BPy,, minimum during the VM to phase 180° and
the subsequent BP,,, maximum to phase 360°. To quan-
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tify the relationships between BP and BFV signals, we
measured the BP-BFV phase shift, defined as the difference
between the phase at the BPp minimum (maximum)
value and the phase at the BFVy minimum (maximum)
value. We have calculated phase values for all data points
in this interval and, in principle, we can measure the
phase shift at all point of the VM cycle. However, for sim-
plicity, we only calculated the phase shift at the minimum
and maximum of these two signals for statistical analysis.
Since these BP-BFV phase shifts reflect dynamical changes
in peripheral and cerebral vascular tone over the course of
the VM, they can be used as a sensitive index of cerebral
autoregulation dynamics in normal and pathological
conditions.

Autoregulation indices

We also assessed autoregulation using a standard index,
calculated using the second-order differential equation
model proposed by Tiecks et al[5] This model assumes a
linear flow-pressure relationship and a constant cerebral
perfusion pressure over the course of a sudden BP reduc-
tion, such as occurs during thigh cuff deflation. This tech-
nique can be also applied to the sudden BP decline during
the VM. The autoregulation index ranges from 0 = "no
autoregulation” to 9 = "the fastest autoregulation;" value
5 reflects "normal autoregulation." We also calculated the
"rate of autoregulation" (RoR) using the slope of the lin-
ear regression fitted to the original BP and BFV waveforms
signals during the period between the baseline and the BP
minimum (descending slope) and between BP minimum
and maximum (ascending slope).

Statistical analysis

We used one-way analysis of variance for between-group
comparisons of baseline, minimum and maximum BPy
and BFV values and phases. Two-way analysis of variance
was used for side-to-side comparisons of BFV between
groups (JMP-5.0 SAS Institute, Cary, NC). For the group
comparisons, we used the BFVy in the right and left MCAs
for the normotensive and hypertensive groups compared
to the BFVy in the stroke-side and non-stroke side MCA in
the stroke group. Age was different between the groups (p
< 0.003). However, age and stroke subtypes had no signif-
icant effects when included as co-variants in the analysis.
Data are presented as mean + SE.

Results

Figure 2A shows representative raw BP and BFV wave-
forms (right and left MCAs) during the VM for a normo-
tensive 31 year old man. The BPy and BFVy signals are
superimposed on the raw waveforms. For comparison, we
show similar signals (the right, non-stroke side, MCA and
the left, stroke side, MCA) for a 48 year old woman with
the left temporal stroke in Figure 2B. The BP and BFV for
the right (non-stroke side) MCA and for the left (stroke
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50 60 70 80
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Schematic diagram showing Hilbert-Huang decomposition of the original blood pressure (BP) signal into the empirical modes
corresponding to amplitude-frequency modulation for different time scales. Panel A shows the profile of the BP waveform over
the course of the VM: |- indicates the beginning of the maneuver, lI- the duration of straining, lll-the end of straining and IV- the
BP overshoot above baseline. (Note that the transient BP decrease in phase lll is due to inspiration.) Panel B shows the empir-
ical modes for each component frequencies and their corresponding amplitudes were detected from the signal (mode 1-10).
Empirical modes corresponding to the faster frequencies (modes |-5) were removed from the original BP and BFV signals. The
empirical mode corresponding to the characteristic BP profile induced by the VM (BPy,— mode 6 in this example) was used to
obtain phase information. Modes 7—10 reflect BP modulations at slow frequencies. Similarly, the empirical mode corresponding
to the characteristic BFV profile was extracted from the raw BFV waveform (not shown).

Page 5 of 11

(page number not for citation purposes)



BioMedical Engineering OnLine 2004, 3:39

side) MCA are shown in the bottom three panels as a func-
tion of the phase. With normal autoregulation, the BFVy
changes precede BPy changes over the course of the VM.
Therefore, the phase at the BFVy minimum is smaller than
the phase at the BPy minimum. (Phase at the BFV mini-
mum for the right MCA = 129° and the left MCA = 112°
vs. the phase at BPy minimum = 178°.) In contrast, with
post-stroke cerebral autoregulation, the phase at the BFV
minimum is similar to the phase at the BPy minimum,
suggesting that BFV is dependent on blood pressure.
(Phase at the BFV,; minimum for the non-stroke MCA =
173° and for the stroke MCA = 180° vs. the phase at BPy
minimum = 185°).

Pressure flow relationship at the BFVy minimum

Figure 3A shows the group averages of BFV values and the
phases at the BFVy minimum and maximum values for the
right MCA in the normotensive and hypertensive groups
and for the non-stroke side MCA in the stroke group. Fig-
ure 3B shows the BFV values and the phases for the left
MCA in the normotensive and hypertensive group, and
the stroke side MCA in the stroke group. Mean BPg values
and corresponding phases are shown in panel C. The
phase at BFV; minimum was different between groups for
the right (non-stroke side) (p = 0.0005) and left (stroke
side) (p = 0.004) MCAs. In the normotensive group, the
phase at BFVy minimum was shorter than the phase at BPy
minimum. In the stroke group, the phase at BFVy mini-
mum was similar to the phase at BPp minimum. The
phase at BFVy; minimum was greater in the non-stroke (p
= 0.002) and stroke (p = 0.03) MCAs, compared to the
normotensive group. In the hypertensive group, the phase
at BFVy minimum was also greater for the right (p =
0.0007) and left (p = 0.006) MCAs compared to the nor-
motensive group. No significant differences were found
between the stroke and hypertensive groups.

The phase at BPy minimum was similar between groups
(normotensive group = 172.7 + 3.9°, hypertensive group
=178.6 £+ 2.0°, stroke group = 178 + 1.9°). Average BPy
values were higher in the stroke and hypertensive groups
compared to the normotensive group at baseline (p =
0.001), at BPgyminimum (p = 0.054) and at BPy maximum
(p =0.0001) (Figure 3C). Average BFVy values at baseline,
at BFVy minimum and maximum, and BFV change from
baseline were not different among groups. Average BPy
change and percent change from baseline to BP mini-
mum and maximum were not different. Average BFVy
change and percent change from baseline to BFV mini-
mum and maximum were also not different.

Pressure flow relationship at the BFVy maximum

In the normotensive group, the phase at BFVy maximum
preceded the phase at BPy maximum (Figure 3). The phase
at BFVy maximum was different between groups for the
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right (non-stroke side) (p = 0.009) and left (stroke side)
(p = 0.003) MCAs. In the stroke group, the phase at BFVy
maximum was similar to the phase at BPy maximum. The
phase was greater for the non-stroke side (p = 0.008) and
stroke side (p = 0.03) MCAs, compared to the normoten-
sive group. In the hypertensive group, the phase at BFVy
maximum was also greater for the right (p = 0.005) and
left (p = 0.009) MCAs compared to the normotensive
group. The phase at BPy maximum was similar among
groups (normotensive group = 354 + 4.7°, hypertensive
group = 360.1 + 2.2° stroke group = 364.1 + 4.3°).

BP-BFV phase shifts

Figure 4A summarizes the differences between the phases
at BPg and BFVy minimum and between the phases at BPy
and BFVy maximum for the right MCA in normotensive
and hypertensive groups and for the non-stroke side MCA
in the stroke group. The BP-BFV phase shifts at the mini-
mum points were smaller in the stroke and hypertensive
groups compared to the normotensive group (p = 0.009).
The BP-BFV phase shifts at the maximum points were
smaller in stroke and hypertensive groups compared to
the normotensive group (p = 0.03). Figure 4B shows the
phase shift for the left MCA in normotensive and hyper-
tensive groups and for the stroke-side MCA in the stroke
group. The BP-BFV phase shifts at the minima and
maxima were also smaller in the stroke and hypertensive
groups compared to the normotensive group (p =
0.0002). The BP-BFV phase shifts at the maxima were
smaller in the stroke and hypertensive groups compared
to the normotensive group (p = 0.008). In the stroke
group, the BP-BFV phase shift at the maxima was greater
compared to the phase shift at the minima for the non-
sttoke MCA (p = 0.02). The BP-BFV phase shifts at the
minima and maxima for the stroke MCA did not reach sta-
tistical significance (p = 0.08). The BP-BFV phase shifts
between the stroke and non-stroke MCA at the minima
and maxima were not different. In the normotensive
group, the phase difference between BP; and BFV,
minima was about 60 degrees corresponding to a time dif-
ference of about 3.6 seconds. In contrast, in the stroke and
hypertensive groups, the time difference between BFV and
BP phases was < 0.5 second.

Autoregulation indices

The standard autoregulation index was not different
between groups and between MCAs in both hemispheres
(Table 2). The rate of autoregulation (RoR) of BFV
responses to BP reduction and increases during the VM
were also not different (Table 2).

Stroke-normotensive and stroke-hypertensive subjects

In a subset analysis, we separated stroke-normotensive (N
= 6) and stroke-hypertensive subjects (N = 9) and
compared them to the non-stroke normotensive and
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Figure 2

Panel A shows blood pressure (BP) and blood flow velocity (BFV) waveforms from the right and left MCAs (MCAR and MCAL
respectively) during the VM for a normotensive subject (top 3 panels). The duration of the VM straining is indicated by a hori-
zontal line. The thick black line indicates the BP; and BFV that reflect the characteristic VM oscillation. Bottom 3 panels show
BPg and BFVy in the MCAR and MCAL. Arrows indicate phases at the BPg and BFV minima. With normal autoregulation, BFVy
minimum preceded BP; minimum. Panel B shows BP and BFV waveforms for a subject with a left temporal infarct (MCAR =
non stroke-side MCA, MCAL = stroke side MCA) (top 3 panels). Horizontal line indicates duration of the VM. Black thick line
indicates the BP; and BFV; obtained from the BP and BFV raw waveforms. Bottom 3 panels show BP; and BFV; in the non-
stroke side MCA and in the stroke-side MCA expressed as a function of BPy,, phase. Arrows indicate that the phase at BFV
minimum was similar to the phase at BP minimum.
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Figure 3

Panel A shows the phase and corresponding residual blood
flow velocity (BFVy) values at baseline, BFVg minimum and
BFVg maximum for the right MCA for the normotensive -e -
and - - ¥- hypertensive groups and for - O- the non-stroke
side MCA in the stroke group. Panel B shows the phase and
corresponding BFV, values for the left MCA in the normo-
tensive and hypertensive groups and for the stroke side MCA
in the stroke group. BFV phase was significantly greater in
the stroke and hypertensive groups compared to the normo-
tensive group for BFVy minimum and maximum in both
MCAs (between groups phase comparisons *** p < 0.005, **
p < 0.01). Panel C shows the phase and corresponding resid-
ual blood pressure (BPy) values for the BPz minimum and
maximum (between groups BP; values comparisons +++ p <
0.001, mean = SE).

hypertensive groups. For the non-stroke side MCA, the
phases at BFVy minima (p = 0.01) and maxima (p = 0.04)
were greater in the stroke-normotensive group compared
to the normotensive group. For the stroke side MCA, the
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Panel A shows the phase shift between BP; minimum and
BFV{ minimum and the phase shift between BP; maximum
and BFV; maximum for the right MCA for the [J normoten-
sive and hypertensive groups and B for the non-stroke side
MCA in the stroke group. Figure 4B shows the phase shift
between BP; minimum and BFV; minimum and the phase
shift between BP; maximum and BFV; maximum for the left
MCA for the normotensive, and hypertensive groups and for
the stroke side MCA in the stroke group. Phase shift was
greater in the normotensive compared to other groups
(between group comparisons ** p < 0.005, ** p < 0.0] *p <
0.05, mean * SE).

phases at BFVy minima (p = 0.04) and maxima (NS, p =
0.08) were greater in the stroke-normotensive group com-
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Table 2: Autoregulation Indices

http://www.biomedical-engineering-online.com/content/3/1/39

Variable Normotensive Hypertensive Stroke

MCA side Right Right Non-stroke-side
ARI 57+33 6.1 £26 6.1 £26

RoR - descending slope 0.7 £ 0.1 1.1 £0.6 0.6+0.2

RoR - ascending slope 05 +0.1 1.6+ 1.0 0.6+0.2

MCA side Left Left Stroke-side
ARI 59+32 59+26 5119
RoR-descending slope 0.6 £ 0.1 08+04 05+02
RoR-ascending slope 05 +0.1 1.5%+1.0 0.6+0.2

Autoregulation index (ARI) and the rate of autoregulation (RoR) for the right and left MCAs in the normotensive and hypertensive groups and for
the non-stroke and stroke side MCA in the stroke group. RoR — descending slope of the linear portion of the BP and BFV reduction between the
baseline and BP minimum. RoR — ascending slope of the linear portion of the BP and BFV increase between BP minimum and maximum during the
VM. ARI and RoR were not significantly different between the groups. Data are presented as mean * SE

pared to the normotensive group. The phases at BFVy
minima and maxima were not different between the
stroke-hypertensive and hypertensive groups for both
MCAs. No significant differences were found between the
stroke and non-stroke side MCA.

Discussion

This study introduces a new technique, based on the
Hilbert-Huang transformation [12,18], termed multimo-
dal pressure-flow analysis, for assessing the relationships
between systemic blood pressure and cerebral blood flow
changes associated with provocative maneuvers. Develop-
ment of this method was motivated by the facts that 1)
that the duration of the VM stages and resulting BP and
BFV responses vary over time and among subjects, and 2)
these types of time series are short and nonstationary, and
therefore, not suitable for analysis using standard Fourier
transform and autoregressive type approaches. We imple-
mented the MMPF method to evaluate the dynamics of
cerebral autoregulation using the instantaneous systemic
BP and MCA BFV phase relationships during the VM. The
frequency and corresponding BP, and BFVy amplitudes
were computed for each data sample to construct a
continuous phase diagram. The BP; and BFV} profiles
were similar over the course of the VM, but the phase rela-
tionships were different. The autoregulation indices, cal-
culated using the standard methods, did not differentiate
the groups.

Cerebral vasoregulation compensates for rapid BP and
BFV transitions over the course of the VM. A sudden and
parallel increase in intrathoracic [19] and cerebrospinal
fluid [8] pressures is associated with a rapid decline in BP
and an initial increase of cerebrovascular resistance,
resulting in a rapid decline in BFV. With active autoregu-
lation, cerebrovascular resistance diminishes, enabling
BFV to recover in the face of falling perfusion pressure,
and BFV responses in the MCA precede the systemic BP

changes. Therefore, in healthy controls, the phases corre-
sponding to the BFVy minimum and maximum were
smaller than BPy phases, reflecting an active vasoregula-
tory process. With delayed or impaired autoregulation,
BFV becomes synchronized with blood pressure. In the
stroke group, the BFVy and BPy phase diagrams were sim-
ilar, suggesting that cerebral blood flow was entrained by
systemic BP. In the stroke and hypertensive groups, BFV
phases at the BFVy minimum and maximum were greater
compared to the normotensive group. The BP-BFV phase
shifts were smaller in the stroke and hypertensive group,
compared to healthy controls.

Methods evaluating dynamic cerebral autoregulation that
use the Fourier transform-based coherence and transfer
functions assume a linear relationship between stationary
signals. Coherence, phase and gain derived from the
transfer function of spontaneous BP and BFV fluctuations
have been used to assess autoregulation. These analyses
have shown a significant phase lead of cerebral BFV with
respect to systemic BP [4,20,21]. However, assumptions
about signal stationarity and a linear flow/pressure rela-
tionship are not met for the short nonstationary time
series from the VM, and therefore transfer function gain
was not evaluated. The joint time-frequency distributions
[22], such as the new MMPF developed here, that make no
assumptions about signal characteristics and can reliably
track simultaneous changes of spectral powers and fre-
quencies, are better suited for these short nonstationary
signals. The variable time delay between BP and BFV
suggests that the relationship between the cerebral blood
flow and systemic pressure is not linear.

Previous studies indicated bilateral impairment of the
dynamics of pressure autoregulation after an acute [2,3]
and subacute ischemic stroke [23]. Dynamic indices of
autoregulation that were calculated from spontaneous BP
and BFV fluctuations were altered, with no significant
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difference between autoregulatory indices in the affected
and unaffected hemispheres. No significant differences
were found in autoregulatory indices between large vessel
anterior and posterior circulation infarcts and lacunar inf-
arcts [2]. In patients with large hemispheric strokes, head
elevations from 0° to 45° induced reductions in arterial
BP, BFV, intracranial and perfusion pressures [1]. We have
reported [24] that cerebral vasomotor responses to hypoc-
apnia and hypercapnia were diminished following minor
chronic infarctions. Baseline BFVs in the MCAs were sim-
ilar between the stroke and the non-stroke groups, but dif-
fered during head-up tilt. BFV declined in the stroke side
MCA during the head-up tilt. Side-to-side BFV differences
were the most prominent in stroke-normotensive subjects
with lower BP during head-up tilt compared to stroke-
hypertensive subjects and non-stroke groups. The present
study has confirmed bilateral impairment of autoregula-
tion dynamics in stroke-normotensive and stroke-hyper-
tensive subjects and also in a non-stroke hypertensive
group. The BP-BFV phase relationships suggest that the
autoregulatory responses were delayed in both hemi-
spheres and that the BFV responses were dependent on
perfusion pressure. About one third of stroke patients are
hypertensive upon hospital admission. Hypertension and
stroke may exert similar pathophysiological effects on vas-
cular compliance, sympatho-vagal interactions [25] and
blood pressure regulation [26,27]. Increased vascular stiff-
ness, impaired vasodilatation and shift of the autoregula-
tory responses toward higher BP values may also affect the
timing of autoregulatory responses in both hemispheres.

There are several limitations of this study: 1) The MMPF
method was implemented for the VM, which is widely
used for clinical autonomic testing. The VM allows nonin-
vasive evaluation of pressure autoregulation, and testing
can be completed in less than 5 minutes. However, the
VM requires active patient cooperation, and may not be
advisable in acute stroke settings where change in intrac-
ranial pressure should be avoided. 2) This study evaluated
a population of younger subjects with minor stroke. A
larger cohort is needed to determine the effects of
ischemic stroke subtypes on the dynamics of autoregula-
tion. 3) Age was different between groups; however, it had
no significant effect on BP-BFV relationship in our analy-
sis. Aging and cardiovascular risk factors exert significant
but distinct effects on regulation of cerebral blood flow.
The vasomotor reactivity to hypercarbia declines with
aging and hypertension, while the dynamics of pressure
regulation can be preserved [7]. This effect may be in part
due to a shift of the autoregulatory range toward higher
blood pressure values.

Conclusions
Multimodal pressure-flow analysis is a new method that
enables evaluation of short nonstationary time-series not

http://www.biomedical-engineering-online.com/content/3/1/39

suitable for Fourier-based techniques. The MMPF method
provides high time and frequency resolution and permits
construction of instantaneous phase diagrams on a beat-
to-beat basis. This method may be particularly useful as a
complementary measure of cerebral autoregulation for
the short and nonstationary time series acquired during
provocative interventions such as the VM. Application of
this method reveals that the regulation of BP-BFV dynam-
ics is altered in both hemispheres after minor stroke, ren-
dering blood flow dependent on blood pressure.
Hypertension without stroke is also associated with
delayed BP-BFV dynamics.

List of abbreviations
BP = blood pressure

BPg = residual BP calculated by MMPF method

BPy,, = empirical mode of BP corresponding to the domi-
nant VM oscillation

BFV = blood flow velocity in the MCA

BFVy = residual BFV calculated by MMPF method
EMD = empirical mode decomposition

HHT = Hilbert-Huang Transform

MCA = middle cerebral artery

MMPF = multimodal pressure-flow analysis

VM = Valsalva maneuver
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