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Abstract—We provide an open access dataset of High
densitY Surface Electromyogram (HD-sEMG) Recordings (named
“Hyser”), a toolbox for neural interface research, and benchmark
results for pattern recognition and EMG-force applications.
Data from 20 subjects were acquired twice per subject on
different days following the same experimental paradigm. We
acquired 256-channel HD-sEMG from forearm muscles during
dexterous finger manipulations. This Hyser dataset contains five
sub-datasets as: (1) pattern recognition (PR) dataset acquired
during 34 commonly used hand gestures, (2) maximal voluntary
muscle contraction (MVC) dataset while subjects contracted
each individual finger, (3) one-degree of freedom (DoF) dataset
acquired during force-varying contraction of each individual
finger, (4) N-DoF dataset acquired during prescribed contractions
of combinations of multiple fingers, and (5) random task dataset
acquired during random contraction of combinations of fingers
without any prescribed force trajectory. Dataset 1 can be used for
gesture recognition studies. Datasets 2–5 also recorded individual
finger forces, thus can be used for studies on proportional control
of neuroprostheses. Our toolbox can be used to: (1) analyze
each of the five datasets using standard benchmark methods
and (2) decompose HD-sEMG signals into motor unit action
potentials via independent component analysis. We expect our
dataset, toolbox and benchmark analyses can provide a unique
platform to promote a wide range of neural interface research
and collaboration among neural rehabilitation engineers.

Index Terms—HD-sEMG, neural interface, hand gesture
recognition, prosthetic control.

I. INTRODUCTION

SURFACE electromyogram (sEMG)-based neural interface
techniques [1] have attracted increasing attention in recent

years. Neural interfaces help amputees regain function via
neuroprostheses which can be intuitively controlled by sEMG
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signals from residual muscles in the stump. In more general
applications, intact users can use neural interfaces to enhance
function via sEMG-based intuitive control of exoskeletons [2],
or to manipulate mobile devices via gesture recognition [3].

In recent years, with the advancement of flexible sensor
techniques, 2-dimensional (2-D) high-density sEMG (HD-
sEMG) electrode arrays have substantially increased the spatial
resolution and number of recording sites, compared with
traditional sEMG electrodes. Specifically, HD-sEMG provides
a high-resolution spatial activation image of the muscle
group covered by the array. Furthermore, HD-sEMG allows
decomposition of the global multi-channel HD-sEMG at the
macroscopic level into motor unit (MU) spike trains at the
microscopic level [4], using independent component analysis
(ICA) [5], [6]. This breakthrough analysis method to decode
information of MUs from HD-sEMG has been applied in
diverse fields such as neuromuscular physiology [7], clinical
neurophysiology [8], neuromuscular biometrics [9] and neural
interface [2].

In the past decade, open-access sEMG datasets have made
research on neural interfaces easier by saving a huge amount of
time for researchers to acquire experimental data. Furthermore,
researchers can easily compare the performance of their
proposed methods using the same benchmark dataset. So far,
there have been five open-access sEMG datasets recorded from
the forearm: (1) Ninapro [10], [11], (2) CapgMyo [12], (3)
CSL-HDEMG [13], (4) SEEDS [14] and (5) HIT-SIMCO
[15]. A comparison of these datasets and our dataset is
presented in Table I. The Ninapro dataset used traditional sEMG
electrodes to acquire sEMG from both intact and amputated
subjects. CapgMyo, CSL-HDEMG and SEEDS datasets used
HD-sEMG electrode arrays (up to 192 channels) to acquire
sEMG from intact subjects. The first four of these datasets
acquired sEMG during prescribed movements or gestures.
Prescribed movements or gestures limit the degrees of freedom
(DoFs) of neuroprostheses because, in practical scenarios, users
need to switch between arbitrary movements (gestures) or
any combinations of DoFs. The lack of arbitrary switching
between DoF combinations limits that ability of these datasets
to simulate realistic applications. The HIT-SimCo Dataset
acquired 8-channel sEMG under random combinations of 3
DoFs of the wrist, filling in the current gap to a certain extent.
However, data acquired from only one day cannot support
studies on cross-day prosthetic control. Furthermore, dexterous
control of neuroprostheses also requires precise prediction of
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TABLE I: Comparison between previous sEMG datasets and ours.

Ninapro CapgMyo CSL-HDEMG SEEDS HIT-SimCo Hyser
No. Subjects 10–40 10–18 5 25 8 20
Amputees? Yes No No No No No

No. Gestures
/Movements Up to 53 8, 12, 2 27 13 11 (Involving

3 DoFs) 34

No. Electrodes Up to 16 128 (HD) 192 (HD) 126 (HD) + 8 8 256 (HD)
Sampling Rate (Hz) 100–2000 1000 2048 2048 1926 2048

Kinematics or Force? Kinematics No No Kinematics Wrist Force Finger Force
Cross-Day? No Yes Yes No No Yes

Random Switch Between
Combinations of DoFs? No No No No Yes Yes

Research Paradigms
Using the Dataset

Gesture Recognition +
Proportional Control
of a Target Gesture

Gesture
Recognition

Gesture
Recognition

Gesture Recognition +
Proportional Control
of a Target Gesture

Gesture
Recognition +
Proportional

Control of 3-DoF
Wrist Force

Gesture Recognition +
Proportional Control of

Finger Force (Both
1 DoF and N DoF

Control)

the force corresponding to each individual finger, which has not
been provided in previous datasets. Additionally, sEMG data
under dynamic and isometric contractions are not balanced in
previous datasets, with data under dynamic contractions more
common.

In this work, we provide open access High densitY Surface
Electromyogram Recordings (Hyser) to fill in the gaps in
existing datasets. We acquired 256-channel HD-sEMG from
forearm muscles contributing to dexterous finger manipulations.
Our Hyser dataset contains five sub-datasets to fulfill the
demands of different applications. Dataset 1, named the pattern
recognition (PR) dataset, was acquired under 34 hand gestures
in common daily use. Both dynamic hand movements and
gesture maintenance tasks were involved. Dataset 2, named
the maximal voluntary muscle contraction (MVC) dataset,
can be used to evaluate MVC of muscles corresponding
to each finger. Dataset 3, named the one-DoF dataset, was
acquired during isometric contraction (ranging from 30% MVC
flexion to 30% MVC extension) of muscles corresponding
to each finger. Dataset 4, named the N-DoF dataset, was
acquired during isometric contraction (ranging from 30% MVC
flexion to 30% MVC extension) of muscles corresponding to
several prescribed combinations of multiple fingers. Dataset
5, named the random task dataset, was acquired during
isometric contraction of muscles corresponding to any random
combination of fingers without any prescribed force trajectory.
Subjects switched between any combinations of DoFs at any
time. Dataset 1 can be used to develop gesture recognition-
based prosthetic control. Datasets 2–5, with both HD-sEMG
and synchronized force labels, can be used for proportional
estimation of the force corresponding to each single finger,
further contributing to controlling dexterous prosthetic hands.
Twenty subjects participated in our experiment with the data
of each subject acquired twice on different days following
the same experimental paradigm. The inter-day data can be
used to simulate cross-day factors (e.g., the cross-day variation
of sEMG characteristics and the shift of electrode arrays) in
practical applications. Application results are reported from
all datasets using standard (benchmark) analysis methods or
emerging deep learning-based methods. Besides, we provide a
toolbox for HD-sEMG analysis, which performs: (1) analysis
of the pattern recognition dataset using linear discriminant
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Fig. 1: Electrode Placement and Experiment Setup. We show
photos of the same arm.

analysis (LDA)-based and deep learning-based hand gesture
classification, (2) analysis of datasets 2–4, i.e., EMG-force
regression, (3) decomposition of HD-sEMG signals into MU
spike trains using ICA. All analyses in our toolbox were
implemented via Matlab. We expect our dataset, toolbox and
benchmark analyses can provide a unique platform to promote
a wide range of neural interface research and collaboration
among neural rehabilitation engineers in the future.

II. OPEN ACCESS DATASET: APPARATUS AND DATA
COLLECTION METHODS

A. Subjects

Twenty intact subjects participated in this study. The detailed
information of recruited subjects is presented in Table A1
(in Appendix). All subjects were informed about the research
purpose and experimental procedure. All subjects signed written
informed consent before the experiment. This study was
reviewed and approved by the ethics committee of Fudan
University (approval number: BE2035).

B. Data Acquisition

To reduce skin-electrode impedance, subjects’ right forearm
was carefully cleaned with abrasive gel and then wiped using
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an alcohol pad. Four electrode arrays were mounted about the
forearm. Each electrode array consists of 64 gelled elliptical
electrodes (5-mm major axis, 2.8-mm minor axis) with a 10-
mm inter-electrode distance (center-to-center), arranged in an
8×8 electrode layout. Four such arrays were used, two placed
on each of the extensor and flexor muscles (Fig. 1). The
256 channels were arranged by successively concatenating
the 64 channels of array 1, 2, 3 and 4 labeled in Fig. 1. The
arrangement of the 64 channels of each array was presented in
the top right corner of Fig. 1. Note that the HD-sEMG electrode
arrays are difficult to be placed exactly on the extensor or flexor
muscles. Accordingly, signals generated from other muscle
groups may also be captured. However, all these captured
signals together form the unique patterns of the extracted feature
set. The radial and ulnar aspects of the forearm, the humeroulnar
joint and the head of the ulna together formed the boundaries
of the area to place electrode arrays. On each forearm side,
two 8×8 electrode arrays construct a 16×8 electrode array.
We aligned the center of the area to place electrode arrays and
the center of the 16×8 electrode array, with the long axis of
the constructed 16×8 electrode array along the long axis of
subjects’ forearm. A right leg drive electrode was placed on
the head of the ulna. A reference electrode was placed on the
olecranon. During data acquisition, subjects sat in a comfortable
chair, following the instructions shown on a computer screen
in front of them to perform the required experimental tasks.
A total of five datasets, comprised of the (1) PR dataset, (2)
MVC dataset, (3) one DoF dataset, (4) N DoF dataset and
(5) random task dataset, were acquired in our experiment.
The 256-channel HD-sEMG signals were acquired using the
Quattrocento system (OT Bioelettronica, Torino, Italy), with
a gain of 150, an ADC resolution of 16 bits (second-order
high-pass cut-off at 10 Hz; low-pass cut-off at 500 Hz having
a transition bandwidth of ∼25 Hz and a stop band attenuation
> 100 dB), and a sampling rate of 2048 Hz. For the MVC
dataset, one DoF dataset, N DoF dataset and random task
dataset, the ground truth force trajectories of the five fingers
were acquired using five separate sensor-amplifier pairs (sensor:
SAS, Huatran, Shenzhen, China; amplifier: HSGA, Huatran,
Shenzhen, China) with a sampling rate of 100 Hz. The detailed
parameters of used equipment and sensors are available in
the “equipment info.pdf” file in our dataset. The acquired HD-
sEMG and force data were synchronized by transmitting a
synchronization trigger signal to both HD-sEMG and force
acquisition systems at the onset of each task. For each subject,
acquisition of all five datasets was conducted on two different
days, with an interval varying from 3 to 25 days (8.50 ± 6.72
days on average), following the same experiment paradigm.

C. Experimental Paradigm

1) PR Dataset: Subjects were instructed to perform the 34
hand gestures shown in Fig. 2. Each subject performed two
repeated trials for each single gesture before they continued
to the next one, following the sequence order shown in Fig. 2.
In each trial, three dynamic tasks (1 s duration, from subjects’
relaxing state to the required gesture) and one maintenance
task (4 s duration, from subjects’ relaxing state to the required

Fig. 2: All involved gestures: (1) thumb extension, (2) index
finger extension, (3) middle finger extension, (4) ring finger
extension, (5) little finger extension, (6) wrist flexion, (7) wrist
extension, (8) wrist radial, (9) wrist ulnar, (10) wrist pronation,
(11) wrist supination, (12) extension of thumb and index fingers,
(13) extension of index and middle fingers, (14) wrist flexion
combined with hand close, (15) wrist extension combined with
hand close, (16) wrist radial combined with hand close, (17)
wrist ulnar combined with hand close, (18) wrist pronation
combined with hand close, (19) wrist supination combined with
hand close, (20) wrist flexion combined with hand open, (21)
wrist extension combined with hand open, (22) wrist radial
combined with hand open, (23) wrist ulnar combined with
hand open, (24) wrist pronation combined with hand open,
(25) wrist supination combined with hand open, (26) extension
of thumb, index and middle fingers, (27) extension of index,
middle and ring fingers, (28) extension of middle, ring and
little fingers, (29) extension of index, middle, ring and little
fingers, (30) hand close, (31) hand open, (32) thumb and index
fingers pinch, (33) thumb, index and middle fingers pinch, (34)
thumb and middle fingers pinch.

gesture followed with maintenance at that gesture) were
performed. Subjects were provided with a 2 s inter-task resting
period and a 5 s inter-trial resting period to avoid the impact
of muscle fatigue on sEMG properties. An audible “beep”
queued each task. For each subject, HD-sEMG signals during
204 dynamic tasks (34 gestures × 2 trials × 3 tasks) and
68 maintenance tasks (34 gestures × 2 trials × 1 task) were
acquired. If subjects missed a specific task or performed a
wrong task, they were asked to inform the experiment assistant.
The missed and wrong tasks were removed from the dataset.
On average, 2.30 ± 2.71 dynamic tasks and 0.85 ± 1.05
maintenance tasks in each experiment were removed from the
final dataset.

2) MVC Dataset: Subjects were instructed to perform their
MVC (isometric contractions) flexion and extension of each
finger. Subjects’ hands were not in the finger constraints for the
PR data collection, but were in the constraints (with a subject’s
hand in a natural state) for all other data collection experiments,
as shown in the right part of Fig. 1. The finger force sensors
were secured to the table so that they could measure subjects’
force in both flexion and extension directions. Note that the
thumb is relatively complicated compared with the other four
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Fig. 3: Visual instruction for the one DoF dataset experiment.
Force tracking using the thumb is shown. Positive %MVC
refers to extension forces.

fingers due to its multi-DOF trapeziometacarpal (TM) and
metacarpophalangeal (MCP) joints. We only considered flexion
and extension of the thumb because these two contraction
directions can support most daily activities, and to be consistent
with the other four fingers. Subjects performed 2 successive
trials to measure their flexion and extension MVC values of one
target finger and then continued to the next finger. The MVC
corresponding to the five fingers were measured following the
order of thumb, index finger, middle finger, ring finger and
little finger. In each trial, subjects were provided with a 10 s
duration to perform the MVC of the required direction and
finger. Within the 10 s window, subjects could perform MVC
at any time, but they were required to maintain the MVC for
at least 2 seconds so that the average force during the steady
period can be taken as the MVC value. A 30 s inter-trial resting
period was provided to avoid the impact of muscle fatigue.
During the experiment, the real time measured force data were
presented on the screen as a visual feedback for subjects. We
provided the acquired force segments corresponding to the 10
trials (5-channel time series for each segment, one finger per
channel) in all our datasets. The MVC of each finger in both
extension and flexion directions can be used to normalize the
acquired force data.

3) One DoF Dataset: Subjects were instructed to perform
25-s duration, isometric contraction of each single finger.
Subjects used the real time finger force as visual feedback
to track a slowly force-varying “triangle” target trajectory, as
shown in Fig. 3. The target force trajectory for the active finger
ranged from 30% MVC flexion to 30% MVC extension. All
other fingers were relaxed without co-contractions. Subjects
performed 3 trials for each finger tracking the target force
trajectory shown in Fig. 3. Our previous work [16] has
demonstrated that a small size of data acquired from the same
subject on a single day can capture most of the important
neuromuscular information, and shows limited performance
differences compared with a large data size using least
squares based model estimation. For cross-subject validation
of generalized control models, the dominant factor is the “data
diversity” (the number of training subjects) rather than “data
size” (the total signal duration from each subject). Accordingly,
we assume that three trials of each DoF from each subject, with
a relatively long duration of 25 s each trial, can support most
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Fig. 4: Visual instruction for the experiment of N DoF dataset.
Force tracking using the thumb and index finger is shown.
Positive %MVC refers to extension forces. In the presented
trial, thumb and index fingers were activated with opposing
extension vs. flexion contraction efforts.

research directions. Subjects were asked to re-perform a trial
if any obvious co-contraction of other fingers was observed.
A total of 30 trials (5 fingers × 3 trials) were included in the
one DoF dataset. Subjects performed all thumb flexion and
extension trials, then progressed in order to the index finger,
middle finger, ring finger and little finger. After finishing one
trial, subjects were provided with a resting period of self-
selected duration. The target force trajectory only instructs
subjects to vary their contraction efforts. Failure to perfectly
track the force trajectory does not result in that trial being
excluded.

4) N DoF Dataset: Subjects were instructed to perform 25-s
duration, isometric contractions of a combination of multiple
fingers. Subjects used the finger force as feedback to track up to
five targets (one per finger), as shown in Fig. 4. The larger blue
were targets which moved along the vertical screen direction.
Subjects performed different slowly force-varying contraction
efforts of up to five fingers to control the movement of smaller
red triangles to track the targets. The target force trajectories
ranged from 30% MVC flexion to 30% MVC extension. A
total of 15 different contraction combinations of DoFs (fingers)
were examined. In 10 combinations, all active fingers used
the same force trajectory (same “triangular” trajectory as the
1 DoF dataset, with extension performed first), those fingers
being: (1) thumb + index, (2) thumb + middle, (3) thumb +
ring, (4) thumb + little, (5) index + middle, (6) thumb + index
+ middle, (7) index + middle + ring, (8) middle + ring + little,
(9) index + middle + ring + little, and (10) all five fingers.
In the other 5 combinations, pairs of fingers were active but
with opposing “triangle-trajectory” extension vs. flexion effort
with the first finger performing extension first and the second
finger performing flexion first), those finger pairs being: (11)
thumb + index, (12) thumb + middle, (13) thumb + ring, (14)
thumb + little, and (15) index + middle. Subjects performed
two trials for each combination of DoFs before they continued
to the next one, following the order from combination (1) to
combination (15) listed above. A total of 30 trials (15 different
combinations of fingers × 2 trials) were included in the N DoF
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dataset. After finishing one trial, subjects were provided with
a resting period of self-selected duration. Because we aimed to
acquire HD-sEMG signals with multiple DoFs to advance the
development of multi-DoF prosthetic control, co-contractions
of other fingers did not lead to the exclusion of trials.

5) Random Task Dataset: Subjects were allowed to
randomly perform isometric contractions of muscles
corresponding to any combination of fingers with any force
trajectory. The force trajectories in all trials can be different.
We aim to provide HD-sEMG data for multi-DoF prosthetic
control in the most realistic scenario, where subjects do not
need to follow any instructions. The real time measured force
data corresponding to five fingers were presented on the
screen. An example of random task was shown in Fig. A1 (in
Appendix). A total of 5 trials were included in the random
task dataset. Each contraction task was with a 25 s duration. A
5 s inter-trial resting period was provided to avoid the impact
of muscle fatigue on sEMG properties.

III. BENCHMARK ANALYTICS AND RESULTS

A. Data Preprocessing

The acquired HD-sEMG signals were first filtered with
a 10–500 Hz 8-order Butterworth bandpass filter. A notch
filter combination was then used to attenuate the power line
interference at 50 Hz and all harmonic components up to 400
Hz. Force data were filtered by an 8-order 10 Hz low-pass
Butterworth filter.

B. Pattern Recognition of Hand Gestures

1) Methods for Pattern Recognition:
(1.1) LDA-based Method
The first 0.25 s reaction time after each task onset was

removed, leaving 0.75 s and 3.75 s signals for dynamic and
maintenance tasks, respectively. The widely used EMG features
of root mean square (RMS) [3], waveform length (WL) [9],
zero crossing (ZC) [17], and slope sign change (SSC) [17],
were extracted separately from each EMG channel. For ZC
and SSC, a noise threshold (approximately 3% of the RMS
during rest [17]) was used. For each feature, a 256-length
feature vector was constructed, one value per channel. The
four 256-length feature vectors were concatenated together to
obtain a 1024-length feature vector. All feature vector were
normalized to a mean of zero and a standard deviation of one.

Principal component analysis (PCA) [18] was applied to
reduce the length the constructed feature vectors. For a
classification task with Nf -length feature vectors and Ns

training samples, the dimensionality D of the feature space is
constrained by both D ≤ Ns− 1 and D ≤ Nf . For the pattern
recognition of hand gestures in our work, Nf = 1024 > Ns−1.
Accordingly, we reduce the length of feature vectors to the
maximal dimensionality of the feature space, Ns − 1. In our
work, Ns varies with different subjects, depending on the
number of correctly performed gestures. All PCA processed
feature vectors were used to train and test a LDA [19] classifier.

We validated the LDA-based classification accuracy of
dynamic tasks and maintenance tasks separately. Specifically,
we employed a leave one out cross-validation strategy on

data (either dynamic or maintenance task) acquired within a
session from each subject. We first mixed all data samples (204
dynamic tasks or 68 maintenance tasks, if all gestures were
correctly performed). Then we held out one testing sample,
using all remaining samples for training. For testing set feature
normalization, the mean value to subtract and the standard
deviation to divide are taken as the corresponding values of
the training set. Both the projection matrix of PCA and the
parameters of LDA model were obtained using training data.
The trained LDA model was then used to give the gesture
label of the held out testing sample. The same procedure was
performed for all data.

(1.2) Deep Learning-based Method
Compared with traditional machine learning methods, deep

neural networks with a considerably higher number of
parameters, require a larger training dataset to avoid overfitting.
Accordingly, we further segmented the HD-sEMG signals using
250 ms windows with 125 ms window overlap. In this way,
the training set were significantly augmented. A convolutional
neural network (CNN) [20] was trained and tested using 250
ms signals. Since spectrogram is an efficient representation in
deep learning based sEMG pattern recognition tasks [21], we
transformed each obtained 250 ms signal to spectrogram via
short-time Fourier transform (STFT) [22]. STFT was performed
using Hamming window with a length of 256 data points and
50% overlap. The output of STFT for each 250 ms signal is
with 3 time frames and 128 spectral bands (8 Hz for each
band). Because the signals have been filtered bellow 500 Hz,
only the first 64 spectral bands were retained. For each 250
ms signal, the representation X ∈ RF×NR×NC was fed into
the CNN model, where F = 3× 64 = 192 denotes the length
of vectors stacked by 3 time frames in all 64 spectral bands,
NC × NR = 16 × 16 denotes the 16 × 16 electrode array
reshaped by the 256 channels. We used Adam optimizer to
update network weights. We used batch normalization to speed
up convergence and avoid gradient vanishing problem. Dropout
technique was applied to address overfitting issues. The CNN
architecture and all hyper-parameters were presented in Table
II and Table A2 (in Appendix), respectively. Given a testing
sample, the segmented M 0.25 s signals were successively fed
into the trained CNN model to obtain M 34-length score vectors
Sm = [s1, s2, ...sp, ..., s34], where Sm,m ∈ {1, 2, ...,M},
denotes the score vector of the mth 250 ms signal window and
sp, p ∈ {1, 2, ..., 34}, denotes the probability that the gesture
label of the corresponding 250 ms signal is p. The average of
all obtained M score vectors was calculated. The index number
corresponding to the maximal score value in the average score
vector was the final gesture label.

To validate the deep learning based hand gesture
classification, we pooled data from all subjects in one session
(either session 1 or session 2) together to increase the data
size, considering deep learning-based models rely on a large
data size to train a large number of parameters. The 6-fold and
2-fold cross-validation was used for dynamic and maintenance
tasks, respectively. To make the data in all folds balanced across
all gestures, in each fold, we randomly allocated 1 out of 6
dynamic samples or 1 out of 2 maintenance samples of all 34
gestures from all subjects. Overall, each fold included almost
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TABLE II: Network architecture

Layers Components In/Out

Conv 1
Conv (w = 3, s = 1)

LReLU
MP (w = 3, s = 2)

320/32

Conv 2
Conv (w = 3, s = 1)

LReLu
MP (w = 3, s = 2)

32/64

FC 1 FC (nn = 576)
LRelu 64/1

FC 2 FC (nn = Ngesture = 34)
LRelu 1/1

Softmax Softmax operation 1/1
*Conv, LReLU, MP, FC denote convolution, leaky ReLU, max pooling, and
fully connected layers, respectively. Variables w, s, nn denote the kernel
width, convolution stride, and neuron numbers, respectively. Ngesture =
34 represents the number of gestures. The depth of input and output
features is summarized in the rightmost column

the same number of signal samples for each gesture. Each
time we employed data in one fold as testing set and all other
folds as training set. Note that, different with LDA-based hand
gesture classification, we used data from all subjects together
to train our deep learning model to avoid overfitting of such a
large number of parameters. By contrast, in all other following
validations, data acquired in different sessions from different
subjects were processed separately. Cross-day and cross-subject
variation of performance was not taken into consideration, as
we only provide benchmark results.

2) Results:
LDA-based classification results of dynamic and maintenance

tasks for the 34 gestures are shown in Table III. Average
classification accuracies of 96.86% and 93.80% were achieved
for the dynamic and maintenance tasks, respectively. Deep
learning based classification results are shown in Table IV.
Average accuracies of 88.96% and 89.84% were achieved
for the dynamic and maintenance tasks, respectively. Such
classification accuracies are generally considered high with
a ∼2.94% random assignment chance level for a 34-class
classification problem. For LDA-based method, our tests were
performed with training and testing data acquired in the same
session. Future studies using our dataset can further improve
the classification accuracy in both within-session and cross-
session (both cross-day and cross-subject) validation using
advanced signal processing and machine learning techniques.
Deep learning based hand gesture classification has attracted
increasing attention in recent years. So far, no consensus exists
on the optimal network architecture. Future studies can develop
more effective architectures by making modifications on ours
in the toolbox.

C. One-DoF Dataset

1) Feature Extraction and Model Description:
EMG amplitude of each channel was estimated by computing

the RMS [17] of each 40 contiguous samples (19.5 ms).
WL, ZC and SSC [17] of each 40 continuous samples were
also extracted, as described previously. The average force of
force samples corresponding to each 19.5 ms window was
also calculated. EMG-force regression was performed on the
downsampled features and force values using training data.

TABLE III: LDA-based classification accuracy (%) of 34 hand
gestures. The reported value for each subject is the average of
cross validations and two sessions.

Subject Dynamic Maintenance
1 95.53 94.79
2 98.77 99.25
3 99.23 97.73
4 98.52 97.03
5 90.19 85.83
6 99.26 97.74
7 96.57 94.12
8 95.57 91.18
9 97.55 88.24

10 99.75 93.94
11 97.72 90.74
12 95.31 96.29
13 97.28 94.81
14 91.81 94.12
15 98.26 90.23
16 96.50 87.12
17 98.01 97.06
18 95.82 93.32
19 99.75 97.73
20 95.82 94.85

Average 96.86±2.49 93.80±3.80

TABLE IV: Deep learning based classification accuracy (%)
of 34 hand gestures. The reported values are the average of
cross validations and two sessions.

Dynamic Maintenance
88.96±1.76 89.84±1.91

The first 2 s and the last 2 s of the data were removed to
account for filter startup and tail transients 1.

We trained linear finite impulse response models (to provide
dynamics) of the form:

Force[i] =

Q∑
q=0

M∑
m=1

θq,m · xm[i− q] (1)

where i is the decimated sample index; Q = 20 (390 ms) is
the number of time lags, similar to our previous work [17];
and M is the number of utilized features. In this work, a 1024-
length feature vector was extracted (4 features×256 channels).
PCA [18] was applied to reduce the dimensionality of the
1024-length feature vector to 200. Accordingly, M = 200
in our work. Optimal model parameters were obtained using
linear least squares, with singular values of the design matrix
discarded if their ratio to the largest singular value was less
than a tolerance threshold (selected as 0.05).

2) Validation Methodologies:
To validate the performance of EMG-force regression for the

one DoF dataset, we employed a leave one out cross-validation
strategy. For each finger per subject, we used 2 trials for PCA-
based feature reduction and training the regression model. This
model was then tested on the third trial. The same procedure
was repeated until all trials of all fingers have been used as
testing trial. Note that for each finger (DoF), force values in
extension and flexion directions were estimated using the same
model, with positive and negative force values representing
extension and flexion, respectively. Root mean square error
(RMSE) between the estimated force and the ground truth
force for each test trial was used for performance evaluation.

1In real-time scenarios, all processing procedures would be performed using
causal filters, with no need to remove any tail transients.
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TABLE V: RMSE (%MVC) of EMG-force regression for one
DoF dataset. The reported value for each subject is the average
of cross validations and two sessions.

Subject Thumb Index Middle Ring Little
1 4.80 5.42 4.38 4.19 6.01
2 5.39 3.77 2.91 3.62 3.92
3 4.27 5.97 4.55 5.96 3.85
4 3.91 4.31 4.93 5.03 4.52
5 6.09 7.78 6.37 6.84 5.89
6 6.54 5.67 8.82 3.85 5.84
7 5.35 4.98 4.55 3.03 3.83
8 7.25 5.72 5.01 3.74 7.82
9 9.53 6.37 4.61 3.71 7.47

10 8.71 4.59 5.58 3.04 9.68
11 5.31 4.83 5.10 5.97 6.98
12 5.44 3.43 7.53 8.20 14.46
13 5.37 6.29 5.23 5.94 7.35
14 10.33 6.03 7.87 7.94 8.56
15 7.77 6.57 5.21 4.79 7.94
16 4.34 4.64 8.46 4.19 5.70
17 6.73 4.80 4.05 5.53 7.47
18 8.40 5.34 8.40 9.30 4.93
19 8.00 7.99 8.06 5.96 11.09
20 5.13 6.57 7.97 6.35 9.60

Average 6.43
±1.84

5.55
±1.19

5.98
±1.78

5.36
±1.77

7.15
±2.67

Grand
Average 6.09±1.98

3) Results:
The summary RMSE results of EMG-force regression in the

one DoF dataset is presented in Table V. The average RMSE
values for the thumb, index, middle, ring and little fingers are
6.43% MVC, 5.55% MVC, 5.98% MVC, 5.36% MVC and
7.15% MVC, respectively. The average RMSE of all fingers is
6.09% MVC. Representative time series of the ground truth
and corresponding estimated force trajectories of the one DoF
dataset are presented in Fig.A2 (in Appendix).

D. N-DoF Dataset

1) Feature Extraction and Model Description:
All data were preprocessed as in the one-DoF case, except

that we trained five models to estimate the force values of
five fingers separately, using the same features extracted from
HD-sEMG but different ground truth force data from 5 fingers.
Each of the five models gives the force estimation of one finger.
The five models together achieve concurrent force estimation
of all five fingers.

2) Validation Methodologies:
To validate the performance of EMG-force regression for the

N DoF dataset, we employed a 2-fold cross-validation strategy.
A total of 15 DoF combinations were examined. In each fold,
one trial of each DoF combination was included, used for
PCA-based feature reduction and training the regression model.
This model was then tested on the other fold. Root mean square
error (RMSE) between the estimated force and the ground truth
force for each trial was calculated and used for performance
evaluation.

3) Results:
The summary RMSE results of EMG-force regression in the

N DoF dataset is presented in Table VI. The average RMSE
values for the thumb, index, middle, ring and little fingers are
7.10% MVC, 6.63% MVC, 5.66% MVC, 5.71% MVC and
7.09% MVC, respectively. The average RMSE of all fingers is
6.44% MVC.

TABLE VI: RMSE (%MVC) of EMG-force regression for N
DoF dataset. The reported value for each subject is the average
of cross validations and two sessions.

Subject Thumb Index Middle Ring Little
1 5.84 7.28 4.02 4.01 6.05
2 5.36 3.89 3.22 4.14 5.43
3 6.21 5.05 4.29 3.83 3.54
4 3.78 4.28 4.57 3.56 3.67
5 6.42 5.46 4.51 4.92 4.84
6 6.67 6.48 5.28 4.73 5.72
7 8.00 6.67 4.02 5.47 5.43
8 5.64 5.00 3.11 3.93 3.95
9 8.60 5.81 5.05 3.74 4.89

10 9.81 9.40 6.00 4.54 8.13
11 7.57 7.09 4.85 5.50 7.40
12 5.39 5.62 6.02 4.33 12.45
13 5.77 5.63 5.79 5.29 5.95
14 11.38 10.54 6.94 15.23 19.43
15 6.76 6.21 7.17 4.66 6.55
16 5.15 6.13 6.45 4.44 5.33
17 7.45 7.43 7.24 5.02 7.02
18 11.30 8.48 9.75 14.93 10.05
19 7.05 8.65 7.55 5.01 7.53
20 7.90 7.52 7.29 7.01 8.39

Average 7.10
±1.99

6.63
±1.70

5.66
±1.68

5.71
±3.30

7.09
±3.63

Grand
Average 6.44±2.62

E. Random Dataset

1) Feature Extraction and Model Description:
All data were preprocessed as in the N-DoF case (five models

were used to estimate force values of five fingers).
2) Validation Methodologies:
To validate the performance of EMG-force regression for

the random task dataset, we employed a leave one out cross-
validation strategy. We used 4 trials for PCA-based feature
reduction and training the regression model. This model was
then tested on the fifth trial. The same procedure was performed
with each trial held out. Root mean square error (RMSE)
between the estimated force and the ground truth force for
each trial was calculated and used for performance evaluation.

3) Results:
The summary RMSE results of EMG-force regression in the

random dataset is presented in Table VII. The average RMSE
values for the thumb, index, middle, ring and little fingers are
8.03% MVC, 8.63% MVC, 7.59% MVC, 7.23% MVC and
11.39% MVC, respectively. The average RMSE of all fingers
is 8.57% MVC.

F. Decomposition of HD-sEMG into MU Spike Trains

1) Procedures of ICA-based HD-sEMG Decomposition:
A series of studies by Chen et al. [5], [23]–[25] demonstrated

the excellent performance of using fastICA [26] for HD-sEMG
decomposition. Negro et al. [6] also applied a combination
of fastICA and convolution kernel compensation (CKC) [27]
to decompose HD-sEMG into MU spike trains. To avoid the
convergence of ICA algorithms to the same MU, either an
automatic peel-off operation in [25] or an orthogonalization
operation in [6] was required. In our implementation, the latter
one was applied. The details of procedures to decompose sEMG
in our work can be found in [6]. We present the main steps of
sEMG decomposition briefly. All of the following processing
steps were performed separately for extensor and flexor muscle
array data (128 channels for each muscle).
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TABLE VII: RMSE (%MVC) of EMG-force regression for
random task dataset. The reported value for each subject is the
average of cross validations and two sessions.

Subject Thumb Index Middle Ring Little
1 8.86 10.81 6.65 6.16 8.60
2 6.40 4.30 3.82 4.45 5.98
3 5.25 5.39 6.68 3.69 3.49
4 4.43 5.42 5.59 6.33 4.47
5 6.65 8.23 9.70 7.28 8.24
6 6.28 10.78 5.87 5.78 6.56
7 4.79 5.38 3.57 4.71 7.03
8 4.56 6.27 5.26 5.15 7.92
9 13.56 9.93 9.71 12.26 10.74

10 8.89 8.75 7.19 5.59 8.37
11 6.60 7.93 3.89 5.02 8.45
12 7.32 7.35 6.58 5.88 50.64
13 13.62 9.54 8.57 10.26 9.28
14 8.52 10.69 8.44 15.76 20.99
15 9.80 14.25 11.58 7.35 18.95
16 7.86 10.02 12.92 7.93 9.47
17 8.81 10.10 7.76 8.80 11.32
18 11.20 10.36 9.68 10.40 12.64
19 6.34 7.17 7.95 4.61 5.25
20 10.78 9.93 10.44 7.26 9.43

Average 8.03
±2.72

8.63
±2.48

7.59
±2.58

7.23
±3.01

11.39
±10.19

Grand
Average 8.57±5.27

(1) Stack 4 copies of raw sEMG signals in each channel to
extend the number of channels from 256 to 1024 [6]. In each
copy, we progressively added one more sample delay to the
original signals.

(2) Whiten the extended sEMG through eigenvalue
decomposition.

(3) Perform fastICA on the whitened sEMG signals to obtain
the sources corresponding to different MUs.

(4) Identify MU spike train (discharge timings) of each
individual MU through peak detection and k-means clustering.
Silhouette distance values (SIL), as the indicators of the
consistency within clusters of data, were calculated. Only MUs
with a SIL higher than a threshold (0.6 in our work) were
retained for further analysis.

(5) Remove duplicate MUs. The ICA algorithm may
converge repetitively to the same MU or its delayed copies
due to limitations of the algorithm itself and/or the extension
operation in step (1). If several MU spike trains share more
than 50% synchronized firing events within a ± 1 ms match
window after compensating for delay, retain the one with the
highest SIL [28].

2) Validation Methodologies:
To validate the ICA-based HD-sEMG decomposition code in

our open access toolbox on the one DoF dataset, we employed
the three metrics:

(1) The number of decomposed MUs. A common limitation
of most current HD-sEMG decomposition algorithms is that
only superficial and large MUs can be identified [29]. The
number of decomposed MUs varies with different segments
of HD-sEMG signals. A larger number of decomposed MUs
could provide more information.

(2) Average SIL of decomposed MUs. SIL measures the
degree of separation of the MU spike trains from noise
(both the background noise and other potential source signals)
[28]. A higher average SIL represents better decomposition
performance.

(3) Pearson correlation coefficient [30] between the ground
truth force and the fitted force of MU spike trains.
Decomposition of each trial was performed separately. We
then calculated the firing frequency of the spike trains of
each MU in each contiguous 19.5 ms window (40 sample
points). This firing frequency was then filtered by an 8-order
10 Hz low-pass Butterworth filter. All of the processed firing
frequencies from a trial were fit to the ground truth force, using
linear regression to determine one optimal scaling gain per
firing frequency/MU. A higher Pearson correlation coefficient
represents better decomposition performance.

3) Results:
The average number of decomposed MUs, average SIL,

and Pearson correlation coefficient between the ground truth
force and the force estimated from the MU spike trains
were shown in Table VIII. On average, 32.57 MUs were
obtained through the ICA-based HD-sEMG decomposition
algorithm. The average SIL value is 0.7351. An average Pearson
correlation coefficient of 0.8611 was achieved. An example
MU discharge plot, showing the ground truth force and the
force estimated from MU spike trains were shown in Fig. A3
in Appendix. The optimal linear combination of the filtered
discharge frequencies of all MUs showed a similar trend
with the ground truth finger force, indicating the decomposed
source signals obtained via HD-sEMG decomposition are
physiologically significance. These results were obtained with a
0.6 SIL threshold. We also reported the decomposition results
vs. different predefined SIL threshold (0.7, 0.8 and 0.9) in
Table A4 in Appendix. The selection of SIL threshold varies
in different studies, depending on their research purposes. We
present decomposition results with different SIL thresholds to
provide a baseline for comparisons in different studies. These
results support that the ICA-based HD-sEMG decomposition
algorithm in our toolbox was properly implemented and the
dataset has good signal quality.

G. Summary of our Hyser Dataset and Toolbox

All available data segments in our dataset and important
functions in our toolbox were presented in Table A3 and Table
Table A5 in Appendix, respectively. Gesture label data were
saved in “*.txt” files with comma-separated values format. All
force trajectory waveforms and EMG signal waveforms were
saved in waveform database (WFDB) format, with one “*.dat”
file storing all 16-bit signed type quantitized values, and one
“*.hea” file storing the scaling factors. To fully implement our
toolbox, users still need a MATLAB license. Instructions on
how to use the codes are given in the first few lines of each
function in our toolbox.

IV. DISCUSSION

A. Limitations of our Dataset and Analysis

For LDA-based analysis of the PR dataset, we did not use a
sliding window to extract features, because the sliding window
technique yielded an extremely large feature dimensionality.
For example, a 3.75 s signal duration of maintenance tasks
combined with a 250 ms window length and a 125 ms sliding
step would result in a 29696-length feature vector (29 windows
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TABLE VIII: Summary results of HD-sEMG decomposition
of all one DoF trials of both experimental sessions from each
subject. For the average number of MUs, the reported results
are the number of MUs in extensor muscle + that in flexor
muscle. The reported value for each subject is the average of
all trials in two sessions.

Subject
Average
Number
of MUs

Average
SIL

Pearson
Correlation
Coefficient

1 18.20+4.27 0.7352 0.7983
2 12.23+7.07 0.7237 0.8328
3 13.67+9.37 0.7130 0.8882
4 12.60+14.87 0.7554 0.8869
5 17.73+28.17 0.7180 0.8866
6 19.03+11.93 0.7026 0.9028
7 10.73+3.77 0.7057 0.8266
8 19.20+9.03 0.7091 0.8848
9 20.13+11.33 0.7759 0.8876

10 21.07+21.73 0.7580 0.9128
11 21.20+17.60 0.7256 0.8775
12 15.10+16.13 0.7333 0.8367
13 19.13+14.10 0.7382 0.8653
14 15.90+19.23 0.7281 0.8536
15 26.50+11.70 0.7634 0.8695
16 20.03+7.20 0.7300 0.8912
17 11.37+22.50 0.7507 0.8225
18 36.63+18.63 0.7395 0.8828
19 16.30+8.03 0.7299 0.7850
20 18.90+29.10 0.7664 0.8301

Average 18.28 (±5.82)
+ 14.29 (±7.32) 0.7351±0.0210 0.8611±0.0358

× 4 features × 256 channels). Such a large number of features
make subsequent analysis, e.g. singular value decomposition
of the large covariance matrix in PCA, difficult to implement,
due to both the high computational complexity and the high
memory requirements. Many previously proposed techniques,
e.g., sliding window, need to be re-considered in the context
of HD-sEMG to better address the challenges from the large
number of channels, together with the huge advantages. Our
toolbox provides the functions for tuning the width and step
length of sliding windows, supporting investigation of window
selection in future studies.

Analysis of data from each subject in each session was
performed separately, with training and testing sets drawn
from the same session. We selected this analysis protocol
because our main purpose of analysis is to provide benchmark
results for dataset users to verify the good signal quality of
our dataset and the proper implementation of algorithms in
our toolbox. In practical scenarios, cross-session validation is
preferred because the trained model should be robust when
applied to a new subject or the same subject on a second day.
So far, most studies in the literature validated their methods
with training and testing data acquired in the same session
from the same subject. Cross-session validation of hand gesture
classification methods have attracted increasing attention in
recent years [3]. Validating advanced algorithms in a more
realistic cross-session protocol is highly encouraged for future
studies. Such more rigorous validation may lead to performance
degeneration compared with previously reported classification
results. In this case, transfer learning algorithms such as transfer
component analysis (TCA) [31] and correlation-based data
weighting (COR-W) [16] are promising to tackle this issue.
Additionally, electrode arrays cannot be replaced on exactly
the same position day-to-day, so the issue of electrode shift
needs to be investigated in future studies. Wu et al. proposed a

data augmentation algorithm [32], which is promising to solve
electrode shift problems in gesture recognition tasks. Although
no data from patients were provided in our dataset and data
from each subject were not acquired across a large number
of days (two limitations of our dataset), data from 20 intact
subjects acquired on two separate days can still largely fulfill
the demands of research on cross-day and cross-subject control
of neural interfaces. Training models with data from only one
day, tested on data from a second day is also favorable for
practical applications, to achieve a low-cost training model.

Another limitation of our dataset is the lack of ground truth
of MU spike trains. The best way to validate decomposition
results is two-source validation [24]. However, we acquired HD-
sEMG from the entire forearm muscle groups, covering a large
area. Common intramuscular EMG can only detected a limited
area of muscle. Accordingly, applying two-source validation for
all spike trains is not feasible in our work. The reliability of HD-
sEMG decomposition was validated via indirect metrics, such
as the SIL. SIL has been demonstrated to show a high positive
correlation with the accuracy of HD-sEMG decomposition [33].
Employing SIL to assess decomposition accuracy is reasonable.

B. Possible Research Directions in Future Studies Which Might
Benefit from our Dataset and Toolbox

Establishing a new dataset for research purposes is time-
consuming, thus our dataset can save a huge amount of time
for researchers. Research directions which might benefit from
our dataset and toolbox include:

1) HD-sEMG-based neuroprosthetic control. In previous
studies, both macroscopic features extracted from global
sEMG [3] and microscopic features extracted from MU spike
trains obtained via decomposition have been used as the
input of control models [2]. Our dataset and toolbox can
be used to develop neuroprostheses based on both pattern
recognition and proportional control, using both macroscopic
and microscopic features. Using our dataset, generalized neural
interface techniques can also be developed for intact users
to manipulate mobile devices in Internet of Things (IoT)
applications. Additionally, deep learning-based control models
have attracted increasing attention in recent years. However,
the large number of parameters used in deep learning models
necessitates large training data sets, which can be a limitation
(as compared to conventional processing methods) in the neural
interface field..

2) Compression of HD-sEMG signals. HD-sEMG acquires
signals from a large number of channels, greatly increasing the
burdens of data storage and transmission in tele-rehabilitation
applications. Several unique properties of HD-sEMG, such as
the similarity between neighboring channels, may facilitate
new solutions for multi-channel sEMG compression. To-date,
investigations of HD-sEMG signal compression are very scarce
in the literature.

3) Signal quality assessment of HD-sEMG. In many
applications, sEMG measurement needs to be achieved in
an unsupervised way. In this case, low-quality signals may
disproportionately reduce the robustness of systems. By
designing a signal quality descriptor, we can exclude low-
quality channels from the analysis procedure, or set the system



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. X, NO. X, XX XXXX 10

(neuroprostheses or health monitoring systems) to an idle
state if signal quality is lower than a predefined threshold.
In the context of signal quality assessment of sEMG, the
specific properties of large HD-sEMG arrays may provide new
challenges and opportunities.

4) Neuromuscular physiology studies. Neuromuscular
physiology studies highly rely on decoding the discharge
activities of MUs via non-invasive sEMG measurement.
The ICA-based HD-sEMG decomposition algorithm in our
toolbox can contribute to extending the body of knowledge in
neuromuscular physiology.

5) Neuromuscular biometrics decoded from HD-sEMG for
user authentication or identification. Our recent study [34] has
demonstrated excellent performance using HD-sEMG as a new
cancelable biometric trait (validated on the Hyser PR dataset),
due to the individually-unique characteristics of HD-sEMG
signals. Our dataset provide HD-sEMG under diverse hand
gestures and muscle contraction efforts, which can be used
to investigate HD-sEMG-based biometrics. Data acquired on
different days can also support the evaluation of cross-day
variation of HD-sEMG biometrics.

V. CONCLUSION

In this work, we provide an open access HD-sEMG dataset,
signal processing toolbox, and benchmark application results
for neural interface studies. The dataset and toolbox support a
diversity of research directions. Signal analysis of the provided
data using the open access toolbox demonstrated the good
signal quality of our dataset and proper implementation of
the algorithms in our toolbox. To facilitate the dataset and
toolbox for research purposes, the data and code in our toolbox
were made as clear as possible. Our HD-sEMG dataset and
processing toolbox are available online via the website2.

APPENDIX A
SUPPLEMENTARY FIGURES AND TABLES ON DESCRIPTION

OF DATA, METHODS AND RESULTS IN OUR VALIDATION

TABLE A1: Detailed subject information.

Subject Age
(Years) Gender Height

(cm)
Weight

(kg)
Intervel Between
Sessions (Days)

1 32 Male 173 78 7
2 24 Male 170 71 7
3 22 Male 177 59 3
4 21 Male 175 75 4
5 22 Male 191 95 5
6 22 Female 162 50 3
7 22 Female 168 60 5
8 26 Male 168 61 17
9 30 Male 175 80 4

10 30 Male 175 80 18
11 26 Female 170 56 25
12 22 Female 158 52 10
13 23 Male 183 86 8
14 29 Female 158 50 4
15 32 Male 178 75 11
16 34 Male 170 87.5 22
17 23 Female 158 47 4
18 27 Female 160 55 7
19 31 Female 165 53 3
20 33 Male 174 70 3

2The website is available immediately after the review process is finished
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Fig. A1: Example of random task dataset.

TABLE A2: Summary of used hyper-parameters in CNN

Parameter Value
Batch Size 512

Learning Rate 10−3

Dropout Probability 0.2
Adam α 0.9
Adam β 0.999

L2 Penalty 10−4

Training iterations 100
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Fig. A2: Example waveforms of ground truth and estimated
finger force trajectories (subject 2, session 1, middle finger,
2nd trial of 1 DoF dataset). RMSE of the example trial was
3.56%MVC
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Fig. A3: Example MU discharge plot (subject 1, session
2, middle finger, 2nd trial of 1 DoF dataset). The Pearson
correlation coefficient of the presented trial is 0.8562.
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TABLE A3: All available signal segments.

Dataset Folder Name File Name in Each Folder Description

pr dataset
(Size: 37.1 GB) subjecti sessionj

taskType sigType samplek .dat
taskType sigType samplek .hea

label taskType .txt

i∈ {‘01’,‘02’, ..., ‘20’} represents the subject index;
j∈ {‘1’,‘2’} represents the session index;

taskType∈ {‘dynamic’,‘maintenance’} represents the two tasks of
each gesture;

sigType∈ {‘raw’,‘preprocess’} represents raw and preprocessed
EMG segments, respectively;

k∈ {‘1’,‘2’,...,‘Ns’} represents the segment index for each task.

mvc dataset
(Size: 7.8 GB) subjecti sessionj mvc sigType fingeru direction .dat

mvc sigType fingeru direction .hea

sigType∈ {‘raw’,‘preprocess’,‘force’} represents signal segments of
raw EMG, preprocessed EMG and ground truth force, respectively;
u∈ {‘1’,‘2’,...,‘5’} represents contractions of thumb, index, middle,

ring and little finger, respectively;
direction∈ {‘extension’,‘flexion’} represents the two contraction

directions;
i,j are defined the same as PR dataset.

1dof dataset
(Size: 29.3 GB) subjecti sessionj 1dof sigType fingeru samplek .dat

1dof sigType fingeru samplek .hea sigType,i,j,k,u are defined the same as PR and MVC datasets.

ndof dataset
(Size: 58.6 GB) subjecti sessionj ndof sigType combinationu samplek .dat

ndof sigType combinationu samplek .hea
u∈ {‘1’,‘2’,...,‘15’} represents the index number of 15 finger

combinations (as listed in the text);
sigType,i,j,k are defined the same as PR and MVC datasets.

random dataset
(Size: 9.8 GB) subjecti sessionj random sigType samplek .dat

random sigType samplek .hea sigType,i,j,k are defined the same as PR and MVC datasets.

*For files with a file name “label taskType .txt”, the stored data are the gesture labels of all segments (either dynamic or maintenance tasks, depending on
the value of taskType) in PR dataset, formatted as 1×Ns comma-separated values (one value per segment). For all other data, the waveforms (either
ground truth force trajectory waveforms or HD-sEMG signal waveforms) were stored in WFDB format (one “*.dat” file storing all 16-bit signed type
quantitized values, and one “*.hea” file storing the scaling factors). Data can be loaded to Matlab using “load pr.m”, “load 1dof.m”, “load ndof.m” and
“load random.m” functions in our toolbox.

TABLE A4: Summary results of HD-sEMG decomposition
thresholded by SIL. Results are the average of trials in the one
DoF dataset.

SIL
Threshold

Number
of MUs

Average
SIL

Pearson Correlation
Coefficient

0.7 9.13 (±3.63)
+ 8.20 (±5.31) 0.8200±0.0142 0.7411±0.0707

0.8 4.70 (±2.17)
+ 4.89 (±3.53) 0.8836±0.0099 0.5950±0.0866

0.9 1.87 (±1.14)
+ 2.32 (±1.86) 0.9391±0.0058 0.4076±0.1101
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