## Overview This dataset contains 747 Deep Fundus Images (DFIs) annotated for glaucomatous optic neuropathy (GON) and accompanied by quality scores. The dataset is structured into an image folder and a labels file providing metadata and annotations. ## Dataset Structure ### 1. Images - Located in the `Images/` folder. - Contains 747 DFIs in JPG format with a 1:1 aspect ratio. - Image naming convention: `x_y.jpg` - `x`: Patient ID (starting from 1) - `y`: Image number per patient (starting from 0) - Example: `188_1.jpg` → Second image of patient 188. ### 2. Labels File (`Labels.csv`) A CSV file containing metadata and annotations for each image. It includes the following columns: | Column Name | Description | | ------------- | -------------------------------------------------------------------------- | | Image Name | Filename of the DFI (e.g., `188_1.jpg`). | | Patient | Unique patient ID. | | Label | Binary classification: `GON+` (glaucomatous) or `GON-` (non-glaucomatous). | | Quality Score | Score ranging from 1 to 10. | ## Dataset Statistics - Total Images: 747 - Glaucomatous DFIs (GON+): 548 - Non-Glaucomatous DFIs (GON-): 199 ## Citation If you use this dataset in your research, please cite the following: "Abramovich O, Pizem H, Fhima J, Berkowitz E, Gofrit B, Meisel M, et al. (2025). Hillel Yaffe Glaucoma Dataset (HYGD) (version 1.0.0). PhysioNet. https://doi.org/10.13026/*****." "Abramovich O, Pizem H, Fhima J, Berkowitz E, Gofrit B, Meisel M, et al. GONet: A Generalizable Deep Learning Model for Glaucoma Detection [Internet]. arXiv.org. 2025." Additionally, if you use the quality scores in your research, please cite the following: "Abramovich O, Pizem H, Eijgen JV, Oren I, Melamed J, Stalmans I, et al. FundusQ-Net: A regression quality assessment deep learning algorithm for fundus images quality grading. Comput Methods Programs Biomed. 2023;239:Art. no. 107522." ## Contact For any inquiries, please contact the corresponding author at orabramovich@campus.technion.ac.il.