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Abstract

We present a novel application of an echo state neural network (ESN) to non-
invasive foetal electrocardiogram (FECG) extraction. Extraction of the FECG is
performed on abdominal recordings of pregnant women via maternal ECG cancel-
lation. The FECG can then be used for foetal health monitoring by extracting clin-
ically interpretable features. We show that optimising an ESN by random search
gives almost equivalent performance to an exhaustive grid search with 85.6% vs.
87.9% accuracy on the test database. This is particularly useful as, while pow-
erful, ESNs have many hyper-parameters which are not easily optimised using
expert knowledge.

1 Introduction

Monitoring of foetal health during labour is of utmost importance. Many technologies exist for
this task, including Doppler ultrasound and foetal scalp electrocardiography (ECG). However, it
is not fully known whether Doppler ultrasound is safe for the foetus (Barnett and Maulik; 2001),
and foetal heart rate (FHR) acquired in this way is less accurate than through scalp ECG (SECG).
SECG involves a single electrode screwed into the scalp of the foetus and cannot capture the three
dimensional electrical field emanating from the heart. Furthermore, SECG can only be recorded
during labour when the cervix is dilated, preventing its use for monitoring throughout pregnancy.
Abdominal ECG (AECG) involves placing electrodes on the abdomen of the mother to detect the
foetal ECG (FECG). This measurement is non-invasive and could be used for monitoring during
pregnancy. However, high contamination both by standard noise sources and by the maternal ECG
(MECG) has limited its use. Thus there is a strong impetus for novel methods for foetal ECG
extraction from AECG. Previously applied techniques include forms of blind source separation,
template subtraction, Kalman filtering and adaptive filtering (see (Sameni and G.D. Clifford; 2010;
Behar, Oster and G.D. Clifford; 2013) for an overview). An Echo State Neural network (ESN)
(Jaeger; 2001) is a class of neural networks capable of non-linear modelling of dynamical systems
and can be used to remove the MECG contribution to the AECG mixture.

2 Methods

2.1 Echo State Neural Network

The ESN is a subset of the more general class of recurrent neural networks (RNN). The primary
distinction between an ESN and other classes of RNN is that the weights of the reservoir are gener-
ated randomly and only the weights of a readout layer are being trained. The aim of the ESN is to
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learn a mapping in which the input function u(n) (the maternal chest ECG which is FECG free) best
matches a target signal y(n) (the AECG). Briefly, one can consider an architecture of K inputs form-
ing the input signal u(n) = [u1(n), ..., uK(n)], M internal units forming the reservoir state vector
x(n) = [x1(n), ..., xM (n)], and L output units forming the output signal η̂(n) = [η̂1(n), ..., η̂L(n)].
Update of the ESN internal units is performed as shown in Eq. 1. The leaky integrator neuron model
was used and considering a purely input-driven dynamical pattern recognition task, the system was
simplified by setting Wb = 0. In this equation α is the leakage rate.

x(n+ 1) = (1− α)x(n) + f(Wx(n) +Wiu(n+ 1) +Wbη̂(n)) (1)

Let z(n) = [x(n) u(n)] represent the extended system state. The output can then be computed as
shown in Eq. 2, where g(·) represents the hyperbolic tangent.

η̂(n+ 1) = g(wo(n)z(n)). (2)

The learning of the ESN proceeds as follows; W (MxM ) was generated sparsely with ψxMxM
non-zero entries, where ψ is the sparsity parameter. Wi (KxM ) was generated from a uniform
distribution between [−1 1]. Both W and Wi are kept constant after initialisation. Eq. 2 was used
to calculate the predicted signal, η̂(n), DB1first 30 seconds of the input chest ECG and weights wo
were learnt by linear regression and kept constant (the ESN is by consequence used as a non-adaptive
filter). The resultant ESN was then applied to the remaining signal.

2.2 Data and Evaluation

Two databases were considered. The first database (DB1) is the Physionet non-invasive FECG (NI-
FECG) database (PNIFECGDB), which contains 55 multichannel AECG recordings from a single
subject (Goldberger et al.; 2000). Of this, one minute from 14 records with visible foetal QRS
(FQRS) complexes were extracted for across three abdominal channels, (2148 FQRS per channel
which were manually labelled). The second database (DB2) is a subset of records from a private
commercial database. Eleven five minute recordings from 8 pregnant women were used, and FQRS
were located automatically from an associated foetal scalp ECG (6444 reference FQRS per channel
using the scalp ECG). Both databases were sampled at 1 kHz with 16-bit resolution. For com-
putational reasons the data were downsampled to 250Hz, with appropriate application of an anti
aliasing filter, before the FECG extraction technique was applied. Because only one chest channel
was available in DB2 only one of the two available chest channels was used for DB1. Each abdom-
inal channel was considered individually. Thus u(n) = u(n) and η̂(n) = η̂(n). As the aim is a
clinical interpretable sign of foetal health, the evaluation of algorithm performance was performed
by assessing how accurate FHR could be estimated from the MECG free residual signal. Estimated
R-peak locations were compared with the reference annotations utilizing the F1 accuracy measure,
F1 = 2 ∗ PPV ∗ Se ÷ (PPV + Se), where PPV is the positive predictive value and Se is the
sensitivity in accurately detecting foetal R-peak locations.

2.3 Hyper-parameter Search

A major issue with the ESN is the lack of optimisation methods for determining the numerous
hyper-parameters associated with the model as well as the knowledge of which hyper-parameters
are relevant. Furthermore, in the context of this work there are an additional two parameters corre-
sponding to filter cut-offs for initial preprocessing of the signals; fb and fh, the baseline wander and
high frequency filters cut-offs respectively. We compare the efficacy of a grid-search as performed
by Behar, Johnson, Clifford and Oster (2013) for NI-FECG extraction using an ESN versus random
search as recently proposed by Bergstra and Bengio (2012). The methodology of the grid search
versus the random search is shown in Tab. 1. For parameters not specified as a range or distribution,
no parametric search was performed as it was thought to be unlikely to improve model performance.

Parameters were selected as those which maximised the F1 measure on DB1. These parameters were
then evaluated on DB2. The parameter search proceeded as follows. For the grid search, the filters
cut-off frequency ranges were fixed to reasonable a priori estimates. The leakage and spectral radius
were then searched (given a high number of reservoir neurons), and well performing parameters
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Table 1: Parameters search range and optimal parameters found for the preprocessing step and the
ESN. GS: grid search. RS: random search. U : uniform distribution.

Search Optimal parameters
Parameter GS (step size) RS GS RS

Low pass filter cut-off, fb [1, 49] (3) U ∼ [1, 50] 20 26
High pass filter cut-off, fh [50, 120], (5) U ∼ [50, 120] 95 87
Leakage, α [0, 1] (0.1) U ∼ [0, 1] 0.4 0.974
Spectral radius of W , ρ [0, 1] (0.1) U ∼ [0, 1] 0.4 0.821
Units in the reservoir, M [10, 250] (20) U ∼ [10, 250] 90 135
Scaling of Win, γ 1 U ∼ [0, 1] 1 0.622
Seed value, s1 – U ∼ [0, 10000] – 1588

Table 2: Performance comparison of the optimal parameters obtained by grid search (GS), random
search (RS, best across 32 iterations ± 1 standard error), and template subtraction (TS).

DB1 DB2

Method — ESN-GS ESN-RS TS ESN-GS ESN-RS TS
Statistics

Se 97.1 97.3 ± 0.29 90.3 87.6 87.6 ± 0.73 86.4
PPV 97.3 97.5 ± 0.28 90.0 86.5 85.5 ± 0.53 85.2
F1 97.2 97.4 ± 0.27 90.1 87.9 86.5 ± 0.62 85.8

were selected. This was followed by a search for the best filter cut-off parameters. The leakage and
spectral radius were then searched again, and finally the number of reservoir neurons was searched.
This iterative approach avoids the prohibitively expensive exhaustive search that would be entailed
if all parameters were searched in conjunction. The random search was much simpler and was per-
formed by sampling from the specified distributions in Tab. 1 simultaneously. Both methods were
also compared to a baseline template subtraction algorithm (Martens et al.; 2007). Automatic rele-
vance determination (ARD) plots, as described in (Bergstra and Bengio; 2012), were also produced
using Gaussian Processes (GP) regression in order to analyse the relevance of the parameters.

3 Results

The grid search for the parameters involved 798 repetitions, and the random search was repeated 512
times. A comparison of the optimal parameters as determined by the grid search versus the random
search (for 32 iterations) is shown in Tab. 2 along with performance measures. Since 8 repetitions
of a 32 iteration random search were performed, the median ± one standard error is reported. Opti-
mising the ESN by random search gave almost equivalent performance to an exhaustive grid search
with F1 = 85.6% vs F1 = 87.9% accuracy. The efficiency of the search, representing how quickly
the random search found optimal parameters, is shown in Fig. 1. The ARD plots are shown in Fig.
2. Note that the seed value s is used as a negative control.

4 Discussion and Conclusion

The random search found extremely well performing parameters in a fraction of the searches. Less
than 8% of the iterations were required to reach almost equivalent performances on both databases
as compared to grid search. Furthermore, the grid search was not complete, as the hyper-parameter
dimensionality was too high to allow for a fully exhaustive grid search. However was noticeable
that the performance of the ESN started decreasing on the test database DB2 after 32 iterations.
This phenomena can be explained by looking at the ARD plots where the relative importance of the
hyper-parameters and prefiltering parameters was different between DB1 and DB2 i.e. the relative
importance of each parameter varies from one data set to the next. Recall that the data in the training

1Seed value for a Mersenne twister pseudorandom number generator.
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Figure 1: Performance of the ESN with respect to number of random search iterations. As each
search is i.i.d., the overall 512 searches can be subsampled to replicate as many as 512

N searches each
of sizeN . Blue ’x’s are training set performances (DB1). Red ’+’s are test set performances (DB2).
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Figure 2: Automatic relevance determination (ARD) applied to the ESN hyper-parameters and the
prefiltering parameters. Left: ARD performed on DB1. Right: ARD performed on DB2.

set (DB1) and test set (DB2) were recorded with different hardware, following a separate protocol
and at different stage of pregnancy for different subjects.

It is unlikely that random search on its own would find ‘the best’ parameters of the ESN and pre-
filtering step. A more sensible approach would be the use of random search followed by sequential
optimisation. Nevertheless, with a very limited number of iterations, random search provides im-
portant insight on which parameters are influential in model performance. For example, we observe
that input scaling is irrelevant (Fig. 2), and subsequent hyperparameter searches would likely be im-
proved by focusing on the other parameters. Furthermore, random search provides a good estimate
of the range of interest for each parameter.

In conclusion, we have shown that, in the context of NI-FECG extraction, random search was an
effective method for learning the ESN parameters. As compared to grid search, random search took
a fraction of the number of iteration and resulted in performances which were extremely competitive
and allowed to understand which of the preprocessing and ESN hyper-parameters were relevant
using ARD. Furthermore, the ESN proved to be an effective method for the removal of the MECG
from the AECG for the purposes of FECG extraction, outperforming the commonly applied template
subtraction. Open source code for producing the figures in this paper is made available to allow
comparison and reproducibility on the public domain data http://physionet.org/physiotools/.
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