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Abstract

Cardiac output (CO) estimation using arterial blood

pressure (ABP) waveforms has been an active area of

physiology research over the past century. However, the ef-

fectiveness of the estimators has not been extensively stud-

ied in a clinical setting. In this paper, we evaluate 11 well-

known CO estimators using clinical radial ABP waveforms

from the Multi-Parameter Intelligent Monitoring for Inten-

sive Care II (MIMIC II) database, using thermodilution

CO (TCO) as reference for comparison. We compare esti-

mations to 988 TCO measurements in 84 patients, totaling

165 hours of ABP waveforms sampled at 125 Hz. As a nec-

essary step for producing absolute CO estimates, we also

present 3 methods of calibrating the estimators, each tai-

lored towards a different use model. The results show that

the standard deviation of error between TCO and the best

CO estimators is approximately 1 L/min for absolute CO

estimates. For relative estimates without calibration, the

best CO estimator has 18% error at 1 standard deviation.

1. Introduction

Cardiac output (CO) is a key parameter in assessing cir-

culatory function. The nominal CO value for a healthy

human is about 5 liters per minute. Currently in clinical

practice, the gold standard for CO measurement is ther-

modilution CO (TCO), which involves the insertion of a

Swan-Ganz catheter into the pulmonary artery. Admin-

istered primarily in intensive care units (ICUs), TCO is

usually measured intermittently, is very invasive, and may

cause severe complications. It would be a tremendous as-

set to healthcare if one could determine CO accurately, re-

liably, and continuously using less invasive, indirect meth-

ods. Indeed, in the past century, over a dozen schemes

have been proposed and developed to estimate CO using

arterial blood pressure (ABP) waveforms obtained from a

patient far less invasively. Some of these estimators rely on

elaborate models of the heart and vasculature while others

use artificial intelligence methods such as pattern match-

ing and classification trees. The published estimators have

not been extensively evaluated with a large set of clinical

ABP waveforms, hence the performance of CO estimation

is still uncertain. Studies in the past have mostly been con-

ducted on a small set of subjects under well-controlled lab-

oratory conditions. It is entirely possible that there will be

circumstances in real world clinical practice in which these

indirect methods produce inaccurate estimates.

The Multi-Parameter Intelligent Monitoring for Inten-

sive Care II (MIMIC II) database has physiologic wave-

form data from over 3500 ICU patients hospitalized at

Beth Israel Deaconess Medical Center, Boston, USA. The

database has about 100 patient records that contain ABP

waveforms and TCO measurements simultaneously. Our

goal is to evaluate 11 of the CO estimators on a suitable

subset of these patients using TCO as reference standard.

Table 1. CO estimators
Estimator CO = k · below

Mean Pressure Pmean

Windkessel [1] Ppulse · HR

Systolic Area [2] Asys · HR

Warner Time Correction [3]
�
1 +

Tsys

Tdias

�
Asys · HR

Liljestrand & Zander [4]
�

Ppulse

Psys+Pdias

�
· HR

Herd [5] (Pmean − Pdias) · HR

Corrected Impedance [6] Variant of systolic area

Nonlinear compliance [7] complex formula

RMS—Simplified form of [8]

q
〈(P (t) − Pmean)2〉 · HR

Exponential best fit [9] fit curve to diastolic decay

3-element model—variant of [10] nonlinear, time-varying model

RMS, root-mean-square. HR, heart rate. Asys, area under systolic region

of ABP. Tsys, Tdias durations of systole, diastole.

2. Overview of CO estimators

Table 1 lists the 11 CO estimators analyzed in this study.

All expressions given in the table are proportional to CO.

The proportionality factor encapsulates factors such as ar-

terial compliance and peripheral resistance that are not

usually obtainable from ABP waveforms.

The relationship between ABP and CO can be under-



stood via the lumped-parameter Windkessel RC circuit

model (Figure 1) of the cardiovascular system. In the

model, electrical current is analogous to blood flow Q(t)
and electrical voltage to blood pressure P (t). The current

source models the heart as a pulsatile pump. The paral-

lel resistor-capacitor combination models peripheral resis-

tance and arterial compliance. In the simplest form, the

current source generates a periodic impulse train, which

gives the ABP waveform P (t). From circuit theory, it can

be shown that in steady state, the change in amplitude of

the ABP waveform is proportional to the amount of blood

ejected by the heart from each impulse. Thus, the Wind-

kessel CO estimator suggests that pulse pressure is propor-

tional to stroke volume, which yields CO when multiplied

by heart rate. A few estimators are based on the Wind-

kessel model, but use other features of the waveform such

as the exponential decay of the ABP during diastole.

Q(t)

t
· · ·

P (t)

t

Q(t) R C P (t)

+

−

Figure 1. The Windkessel RC circuit model.

There are several major simplifying assumptions in the

model that cause discrepancies from the real cardiovas-

cular system. First, the entire venous circulation is ne-

glected. Second, the real heart does not eject blood in-

stantaneously. Finally, not only do arterial resistance and

compliance vary over a cardiac cycle, but also it is more ac-

curate to model the vasculature using a distributed system

rather than lumped parameters. Therefore, in an attempt to

produce more accurate results, some estimators have been

developed using more complex models such as nonlinear

arterial compliances and resistances, as well as distributed

models in which the blood vessels are no longer viewed as

lumped RC elements.

3. Methods

3.1. Implementation

Figure 2 presents the high-level data flow diagram of

our system. The first block interfaces with the MIMIC

II database to extract 10-minute ABP waveform segments

centered at each TCO measurement.

The next 3 blocks use signal processing techniques to

extract clean features of the ABP waveform required by

each CO estimator such as systolic pressure, diastolic pres-

sure, mean pressure (MAP), heart rate, etc. Since most

features can be obtained from each beat in the ABP wave-

form, an onset detection algorithm [11] is used for beat iso-

lation. The features are then median filtered to obtain aver-

Figure 2. Data flow diagram for CO estimation.

age statistics for each 1-minute waveform segment. Since

MIMIC II data is collected in a far less controlled envi-

ronment than a typical research experiment setting, wave-

forms are prone to noise and artifact corruption. To address

this problem, an algorithm that identifies bad waveform

segments was designed. For each beat, the filter outputs a

binary signal quality index (SQI), with ‘0’ indicating clean

and ‘1’ indicating corrupted. Figure 3 shows an example

of an ABP waveform marked with several features.

The third component implements each CO estimator,

using extracted features of the ABP waveform as input.

Since each estimator produces values proportional to the

estimated CO, at least one calibration with TCO is neces-

sary to obtain an absolute CO estimate in L/min.
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Figure 3. Radial ABP waveform. Psys, Pdias are marked

on waveform as circles. End-of-systole detections are

marked as crosses. SQI is shown as a stem plot on the

bottom, flagging any corrupted beat at the onset time.

3.2. Calibration and evaluation

We calibrate each estimator in three ways (denoted as

C1, C2, C3), each tailored towards a different use model.

In two of the calibration methods, we use a vector-based

approach. For a patient with N TCO measurements, we

construct an N -dimensional column vector, with one di-



mension for each measurement:

Reference CO (TCO): r =
[

r1 r2 · · · rN

]T

Uncalibrated estimate: x =
[

x1 x2 · · · xN

]T

Calibrated estimate: q = kx

r

xkx

Figure 4. Visualizing TCO and estimated CO data as vec-

tors. For C1, we choose k to minimize error (magnitude of

the dashed vector).

As shown in Figure 4, the magnitude of error normalized

over TCO becomes

error =
‖r − q‖

‖r‖

For optimal calibration (C1), we choose a single constant

k to minimize the mean square error. Using linear algebra,

the optimal k is given as:

k =
rTx

xTx
(C1)

C1 calibration is useful in obtaining a lower bound of er-

ror for each estimator. However, C1 would be unsuitable

in a live clinical setting, in which we do not know future

values of TCO and ABP waveforms. Therefore, for on-

line estimation, we update our optimal k using previous

data points. For the i-th k, we calibrate using the previous

(i − 1)-dimensional vector:

ki =
rT

i−1
xi−1

xT

i−1
xi−1

(C2)

Now the calibrated estimate becomes:

q =
[

k1x1 k2x2 · · · kNxN

]T

Often times, TCO is administered sparingly in ICUs.

Therefore, it is also useful to know the estimator perfor-

mance by calibrating only to the first TCO measurement:

k =
r1

x1

(C3)

3.3. Relative CO estimation

Outside of the ICU setting, TCO is likely unavailable;

thus, we cannot calibrate to produce an absolute CO esti-

mate. However, it is still useful to know relative fractional

changes in CO. For example, if an uncalibrated estima-

tor output decreased from 4000 to 2000, we would like to

know if the true CO has decreased by a similar fractional

amount. For evaluation, we define percentage changes in

TCO and each uncalibrated CO estimator as:

X =
x − x

x
R =

r − r

r
r and x are averages in TCO and CO estimator output,

respectively. To report error, we examine the difference

between X and R. For example, if X = 0.3 and R = 0.4,

the magnitude of error would be reported as 0.1, or 10%.

3.4. Patient selection

We want to evaluate the CO estimators on patients that

have relatively clean ABP waveforms and a significant

number of TCO measurements. We accept patients in the

MIMIC II database if all of the following are true:

1. SQI flags ≤ 20% of beats in ABP waveform.

2. Patients with ≥ 5 TCO measurements.

3. Patients that do not have intra-aortic balloon pumps

or with abnormal aortic or tricuspid valve function.

Based on these criteria, 84 patients were identified, each

averaging 12 TCO measurements. Some statistics for the

population is listed in Table 2.

Table 2. Subject population statistics

Parameter Mean Range

Age [years] 70 40 − 95
TCO [L/min] 5.3 2 − 12
∆TCO per patient [L/min] 2.5 1.5 − 6

4. Results and discussion

The first 3 columns of Table 3 list the standard devia-

tion of error in liters per minute between TCO and each

estimator for the 3 different calibrations for absolute CO

estimates. The last column of the table lists the percentage

error at 1 standard deviation for relative CO estimates. The

95% confidence intervals are about twice the values in the

table. Figure 5 shows a Bland-Altman plot for the Liljes-

trand & Zander estimator. The standard deviation and 95%

confidence intervals are marked by a pair of solid lines and

a pair of dashed lines, respectively.

From these results, we see that the best CO estimation

methods give errors of approximately 1 L/min. For C1-

calibration, the lowest error is 0.92 L/min. Although this

error may seem large, studies [12] have shown that TCO

itself has errors of 10% at the 1 std dev bound. Therefore,

if a TCO measurement reads 5 L/min, there may exist an

error up to 0.5 L/min. It is interesting to note that the mean

pressure and Windkessel estimators, the most primitive es-

timators of CO, have less error than some of the more ad-

vanced ones. Because some of the error distributions were



non-Gaussian, we employed the Kolmogorov-Smirnov test

to see if the top five estimators were statistically significant

better predictors of CO than mean pressure (these best five

were identified in a previous, smaller pilot study). The

threshold for significance was p < 0.01, after a Bonfer-

roni correction for multiple (n = 5) comparisons. The

Liljestrand & Zander (p = 6.67 × 10−6) and Corrected

impedance (p = 4 × 10−4) estimators were significantly

superior to mean pressure, based on their error distribu-

tions resulting from the C1 calibration method.

Table 3. Estimation error in L/min at 1 standard deviation

with 3 different calibration methods, sorted from best to

worst. The last column lists the percentage error for rela-

tive estimation without calibration.
Error at 1σ C1 C2 C3 rel

Liljestrand & Zander 0.92 1.01 1.23 18%

Systolic area 0.96 1.06 1.29 19

Corrected impedance 1.00 1.09 1.29 20

Time correction 1.02 1.12 1.35 20

Mean pressure 1.02 1.11 1.43 20

Windkessel 1.04 1.16 1.37 20

Root-mean-square 1.04 1.18 1.38 21

Herd 1.24 1.37 1.55 25

Nonlinear compliance 1.28 1.46 1.72 26

3-element model 1.45 1.68 2.51 30

Exponential best fit 1.80 3.29 4.54 37
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Figure 5. Bland-Altman plot for comparing the Liljestrand

and Zander estimator (x) to TCO (r) with C1 optimal cal-

ibration. The error histogram is shown on the left. The

solid lines show 1 std dev bounds, and the dashed lines

show 95% confidence intervals.
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