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Abstract

Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively
stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the
changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is
not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique—
the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between
spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in
healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations,
and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables
indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation.
Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral
autoregulation (<0.1 Hz), but also over the higher frequency range from ∼0.1 to 0.4 Hz. These findings indicate that type 2
diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed
from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF
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method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification
of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.
c© 2007 Elsevier B.V. All rights reserved.

PACS: 87.15.Ya; 87.19.U-; 87.63.dk; 89.20.-a

Keywords: Nonstationary; Nonlinear phase interaction; Instantaneous phase shift; Cerebral autoregulation; Cerebral blood flow velocity;
Multimodal pressure-flow analysis

1. Introduction

Cerebral autoregulation regulates cerebral blood flow by adjusting the small-vessel resistances in response to
beat-to-beat blood pressure (BP) fluctuations [1,2]. It can be damaged by small-vessel ischaemic cerebrovascular
disease associated with diabetes mellitus, stroke [3–5] and brain injury [6,7]. Impaired cerebral autoregulation leads
to dependence of blood flow on blood pressure, which may affect blood supply to brain when peripheral blood pressure
is reduced under physiological and pathological conditions. Therefore, reliable evaluation of cerebral autoregulation
is important for diagnosis and clinical assessment of cerebrovascular disease.

Conventional approaches model autoregulation with blood pressure as input and blood flow as output [8,9]. A
transfer function is typically used to explore the relationship between blood pressure (BP) and blood flow velocity
(BFV) by calculating gain and phase shift between the BP and BFV power spectra [2,8,10–16]. In this approach, it is
presumed that signals are stationary, and are composed of superimposed sinusoidal oscillations of constant amplitude
and period at a predetermined frequency range. However, blood pressure and blood flow velocity signals recorded
in clinical settings are often nonstationary and are modulated by nonlinearly interacting processes at multiple time-
scales corresponding to the beat-to-beat systolic pressure, respiration, spontaneous BP fluctuations, and those induced
by interventions. Therefore, reliable measures of the nonlinear BP–BFV relationship without preassuming oscillation
frequencies and waveform shapes are needed.

To overcome problems related to nonstationarity and nonlinearity, a novel computational method called multimodal
pressure-flow (MMPF) analysis was recently developed to study the blood pressure-flow relationship during the
Valsalva manoeuvre (See Section 2.4) [17]. The MMPF method can reliably extract BP and BFV oscillations induced
by the intervention (i.e., sudden reduction followed by an increase in BP and BFV), and enables evaluation of
cerebral autoregulation based on instantaneous phase analysis of BP and BFV oscillations. Applying this technique, a
characteristic phase lag between BFV and BP oscillations was found in healthy subjects and this phase lag was reduced
in patients with hypertension and stroke that are associated with impaired autoregulation [17]. These findings suggest
that BP–BFV phase shift could serve as an index of cerebral autoregulation. However, intervention procedures, such
as the Valsalva manoeuvre, introduce large intracranial pressure fluctuations and require patients’ cooperation, and
such procedures are limited for clinical evaluation of autoregulation.

We hypothesize that the dynamics of cerebral autoregulation can be evaluated from spontaneous BP–BFV
fluctuations during supine rest. This hypothesis is motivated by the observation that blood pressure and blood flow
velocity can be entrained by respiration or other external perturbation [18,19], and exhibit spontaneous oscillations
over a wide frequency ranges (0.05–0.4 Hz) even during resting conditions [14,15,20–22]. Therefore, similarly to BP
and BFV oscillations introduced by the Valsalva manoeuvre, there would be phase shifts between spontaneous BP
and BFV oscillations during baseline condition and BP–BFV phase shifts would be reduced in subjects with impaired
autoregulation.

In order to better quantify the nonlinear BP–BFV relationship, here we propose an improved MMPF method,
which uses the Ensemble Empirical Mode Decomposition [23] to extract spontaneous BFV and BP oscillations during
resting conditions and uses Hilbert transform to measure continuously instantaneous phase shifts between spontaneous
BFV and BP oscillations (see details in Section 2.4). To test our hypothesis, we apply the improved MMPF to BP
and BFV data collected in 20 healthy subjects and 20 subjects with type 2 diabetes mellitus during supine resting
conditions. Diabetes is associated with microvascular disease that affects vasomotion and vascular reactivity [24,
25]. Evaluations of BFV responses to hypercapnia and head-up tilt have demonstrated that cerebrovascular reserve
and endothelium-dependent vasodilation may be compromised in diabetes [26,27]. We expect that diabetes alters the
cerebral autoregulation and thus, BP–BFV phase shifts are reduced in subjects with type 2 diabetes mellitus compared
to healthy subjects during supine resting conditions.
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Table 1
Demographic characteristics for control and diabetes groups

Group Control Diabetes P

Age (yrs) 55.2 ± 2.6 61.0 ± 1.6 NS
Gender (M, F) 12, 8 11, 9 NS
Race (White, Asian, African American) 18, 1, 1 16, 1,3 NS
Body mass index (kg/m2) 25.4 ± 0.8 27.9 ± 1.1 NS
Hemoglobin A1C (%) 5.36 ± 0.11 7.30 ± 0.22 <0.0001
Glucose (mg/dL) 79.9 ± 2.6 138.9 ± 16.4 0.004
Total cholesterol (mg/dL) 212.8 ± 10.4 196.8 ± 10.2 NS
Dominant oscillation frequency (Hz) 0.16 ± 0.02 0.25 ± 0.01 0.0001
Respiratory frequency (Hz) 0.20 ± 0.01 0.26 ± 0.01 0.0006
Baseline CO2 (mm Hg) 38.3 ± 1.2 35.2 ± 0.2 0.03
Diabetes duration (yrs) 11.8 ± 2.5
Hypertension 0 6
Retinopathy 0 6
Orthostatic hypotension (yes) 0 2
Cardiac-vagal impairment (yes) 0 10
Baseline heart rate (bpm) 63.3 ± 2.2 69.3 ± 2.4 NS
Systolic blood pressure (mm Hg) 121.8 ± 3.4 131.6 ± 3.8 NS
Diastolic blood pressure (mm Hg) 70.9 ± 2.1 69.5 ± 1.8 NS
Mean blood pressure (mm Hg) 90.2 ± 2.1 89.2 ± 2.1 NS

Data are presented as mean±SE. P values indicated between group comparisons.

2. Methods

2.1. Subjects

The control group consisted of 12 men and eight women who were normotensive, had normal hemoglobin A1C
levels and were not treated for any systemic disease. The diabetes group consisted of 11 men and nine women
with type 2 diabetes mellitus (duration 11.8 ± 2.5 years; mean ± SE). All subjects did not have a history of
strokes, clinically important cardiac disease, arrhythmias, significant nephropathy, kidney or liver transplant, renal
or congestive heart failure, uncontrolled hypertension, carotid artery stenosis >50% by medical history and MR
angiography, and neurological or other systemic disorders.

Diabetic retinopathy was diagnosed in six diabetic patients with the Joslin Vision Network video-digital retinal
imaging system that uses a nonmydriatic retinal fundus camera with low light level imaging without pupil
dilatation [28] and has been validated against clinical examination and standard retinal imaging [29]. Two diabetic
subjects had autonomic dysfunction with orthostatic hypotension and eight diabetes subjects also had cardiac-vagal
impairment. Diabetic subjects were treated with insulin (4), oral glucose-control agents (9) or diet (7). For six
hypertensive diabetic subjects, antihypertensive medications were discontinued for three days before the study.

The study was performed in the Syncope and Falls in the Elderly (SAFE) Laboratory at the Beth Israel Deaconess
Medical Center (BIDMC). All subjects were recruited consecutively and provided informed consent that was approved
by the Institutional Review Boards at the BIDMC and the Joslin Diabetes Center. All subjects were screened
with a medical history, physical examination, standard battery of autonomic tests [30] and routine blood and urine
chemistries. Demographic and clinical characteristics are summarized in Table 1.

2.2. Data acquisition

The experiments were done in the morning or >2 h after the last meal. Subjects were resting comfortably in
supine position in a quiet environment for 20 min during instrumentation for the study. Then data were collected for
at least 5 min during the baseline resting conditions when subjects were awake, breathing regularly at their normal
respiratory frequency. The electrocardiogram was measured from a modified standard lead II or III using a Spacelab
Monitor (SpaceLab Medical Inc., Issaquah, WA). Beat-to-beat blood pressure was recorded with a Finapres device
(Ohmeda Monitoring Systems, Englewood CO) from a finger that was kept in a constant temperature. Cerebral blood
flow velocity was measured from left and right middle cerebral arteries using transcranial Doppler ultrasonography
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system (MultiDop X4, DWL Neuroscan Inc, Sterling, VA). Data was continuously recorded at a sampling frequency
of 500 Hz and was resampled to 50 Hz for data analysis.

2.3. Statistical analysis

Descriptive statistics were used to summarize data. We used one-way analysis of variance for between-group
comparisons of autoregulation measures and other parameters that may affect autoregulation including age, body mass
index, baseline heart rate, BP, BFV, cerebrovascular resistance, respiration frequency and CO2. Multivariate analysis
of variance (MANOVA) with sides (left vs. right middle cerebral artery) as repeated measures was also performed
to explore the effects of type 2 diabetes on the cerebral autoregulation assessed by the phase relationship between
BP and BFV (JMP-5.0 SAS Institute, Cary, NC). In MANOVA, the BP–BFV phase shifts were adjusted using linear
fitting to account for possible effects of the frequency of dominant oscillation (from ∼0.1 to 0.4 Hz) (see Table 1). The
adjustment was performed using a linear regression model of phase shift as a function of mean dominant frequency.
For each subject, residual values after detrending were added to the mean phase shift to obtain the frequency-adjusted
phase shift.

2.4. Multimodal pressure-flow (MMPF) analysis

To quantify the dependency between cerebral blood flow and systemic pressure, we developed MMPF
computational method that was recently applied to study the BP–BFV relationship during the Valsalva
manoeuvre [17]. The MMPF method includes two major steps: (1) decompose each signal (BP and BFV) into multiple
empirical modes; and (2) apply phase analysis to chosen BP oscillations and corresponding BFV oscillations in certain
empirical modes.

2.4.1. Signal decomposition
The original MMPF applies the empirical mode decomposition algorithm to decompose complex BP and

BFV signals into multiple empirical modes (called intrinsic mode functions) with each mode representing a
frequency–amplitude modulation in a narrow band that can be related to a specific physiological process [31]. For
a time series x(t) with at least two extremes, the decomposition uses a sifting procedure to extract mode functions one
by one from a finest scale to the largest scale,

x(t) = s1(t) + r1(t)

= s1(t) + s2(t) + r2(t)
...

= s1(t) + s2(t) + · · · + sn(t) (1)

where sk(t) is the kth mode function and rk(t) is the residual after extracting the first k mode functions. Briefly, the
extraction of the kth mode function includes the following steps:

(i) Initialize h0(t) = hi−1(t) = rk−1(t) (if k = 1, h0(t) = x(t)), where i = 1;
(ii) Extract local minima/maxima of hi−1(t) (if the total number of minima and maxima is less than 2, sk(t) = hi−1(t)

and stop the whole decomposition process);
(iii) Obtain upper envelope (from maxima) and lower envelope (from minima) functions p(t) and v(t) using cubic

spline fittings to interpolate local minima and maxima of hi−1(t), respectively;
(iv) Calculate the hi (t) = hi−1(t) − (p(t) + v(t))/2;

(v) Calculate the variance (VA) of p(t)+v(t)
2hi−1(t)

;
(vi) If the VA is small enough (less than a chosen threshold VAmax, typically between 0.2 and 0.3) [31], the kth mode

function is assigned as sk(t) = hi (t) and rk(t) = rk−1(t) − sk(t); Otherwise repeat steps (ii)–(v) for i + 1 until
VA < VAmax.

The above procedure is repeated for k +1 to obtain different mode functions at different scales until there are fewer
than two minima or maxima in a residual rk(t) which will be assigned as the last mode function (see the step (ii)
above).

A limitation of the empirical mode decomposition in the application for nonstationary biological signals is the
“mode mixing” problem; i.e., for signals with intermittent oscillations, a mode obtained from the empirical mode
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decomposition could comprise of oscillations with different wavelengths at various temporal locations [32]. In this
study, in order to extract the spontaneous oscillations in BP and BFV during baseline conditions, we used an improved
decomposition algorithm, namely the Ensemble Empirical Mode Decomposition [23]. This method consists of an
ensemble of the empirical mode decompositions of data with added white noise and treats the resultant means of
the corresponding intrinsic mode functions from different decompositions as the final result. The new decomposition
approach overcomes this limitation and ensures the decompositions to compass the range of possible solutions in the
sifting process and to collate the signals of different scale in the proper mode function naturally. Shortly, for a time
series x(t), the new decomposition includes the following steps:

(i) Generate a new signal y(t) from the original time series x(t) by superposing to x(t) randomly generated white
noise with amplitude equal to 10% of the standard deviation of x(t);

(ii) Perform the empirical mode decomposition on y(t) to obtain intrinsic mode functions;
(iii) Repeat steps (i)–(ii) m times with different white noise to obtain an ensemble of intrinsic mode functions

{s1
k (t), k = 1, 2 . . . , n}, {s2

k (t), k = 1, 2 . . . , n}, . . . , {sm
k (t), k = 1, 2 . . . , n};

(iv) Calculate the average of intrinsic mode functions {sk(t), k = 1, 2 . . . , n}, where s(t)
k =

1
m

∑m
i=1 si

k(t).

The last two steps are to reduce noise level and to ensure that the obtained mode functions reflect the true
oscillations in the original time series x(t). In this study, we repeated decomposition m = 100 times so that the
noise level is approximately less than 1%.

The intrinsic modes for BP and BFV signals were obtained using decomposition procedure described above.
Then BP and BFV relationship was assessed from spontaneous oscillations in certain intrinsic mode function(s) of
BP and BFV signals. Statistically, evaluating several cycles of spontaneous oscillations corresponding to the same
physiological functions provides better reliability and reproducibility of the results. Thus, dominant and continuous
oscillations in BP and BFV in specific modes can provide a better estimation of BP–BFV phase relationship (Fig. 1).
In this study, oscillations in the range of ∼0.01–0.6 Hz were selected for the assessment of autoregulation. We also
analysed the oscillations in two frequency regions separately (<0.1 Hz and ∼0.1–0.4 Hz).

2.4.2. Phase analysis
To quantify BP–BFV phase relationship, we applied the Hilbert transform to the extracted BP and BFV oscillations

to calculate their instantaneous phases [33]. For a time series s(t), its Hilbert transform is defined as

s̃(t) =
1
π

P
∫

s(t ′)

t − t ′
dt ′ (2)

where P denotes the Cauchy principal value. Hilbert transform has an apparent physical meaning in Fourier space:
for any positive (negative) frequency f , the Fourier component of the Hilbert transform s̃(t) at this frequency f can
be obtained from the Fourier component of the original signal s(t) at the same frequency f after a 90 deg clockwise
(anticlockwise) rotation in the complex plane; e.g., if the original signal is cos(ωt), its Hilbert transform will become
cos(ωt − 90 deg) = sin(ωt). For any signal s(t), the corresponding analytical signal can be constructed using its
Hilbert transform and the original signal:

S(t) ≡ s(t) + i s̃(t) = A(t)eiϕ(t) (3)

where A(t) and ϕ(t) are the instantaneous amplitude and instantaneous phase of s(t), respectively. To obtain phase
values of discrete time series s(i), we implemented the discrete Hilbert transform [34] by doing the convolution of
s(i) and h(i), i.e., s̃(i) = s(i) ∗ h(i), where

h(i) =

{
0 i even
2/ (iπ) i odd.

(4)

The convolution was fulfilled by performing discrete Fourier transformation on s(i) and h(i), and inverse discrete
Fourier transformation on the product of the two obtained Fourier transforms [34].

Unlike the Fourier transform, the Hilbert transform method does not assume that signals are composed of
superimposed sinusoidal oscillations of constant amplitude and frequency [33]. Rather, it provides instantaneous
phase ϕ(t) and local amplitude A(t) of an oscillation. Real-world biological fluctuations, such as BP and BFV, are
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Fig. 1. Dominant spontaneous oscillations of blood pressure (BP) and cerebral blood flow velocity (BFV) in (A) a 72-year-old healthy control
woman and (B) a 68-year-old man with type 2 diabetes mellitus during supine baseline. BP, left and right BFVs (Panels 1–3 in A and B) were
decomposed into different modes using ensemble empirical mode decomposition algorithm, each mode corresponding to fluctuations at a different
time scale. BP and BFV fluctuations exhibit continuous and dominant oscillations at the frequency from ∼0.07 to 0.4 Hz (Panel 4 in A and B). The
dominant oscillations were extracted and used for the assessment of BP–BFV phase relationship. Instantaneous phases of BP and BFV oscillations
(solid lines in the bottom panels of A and B) were obtained using the Hilbert transform. For each subject, the mean BP–BFV phase shift (horizontal
dashed lines in bottom panels of A and B) was obtained as the average of instantaneous BP–BFV phase shifts for all cycles of dominant oscillations.
(C) Phase shifts between spontaneous dominant oscillations of BP and BFV were much smaller in diabetes group than in healthy control group
(p < 0.0001). The group averages of BP–BFV phase shifts for control and diabetes are shown in columns with error bars as the standard errors.
There was no significant difference in phase shifts between left and right blood flow velocities in both control and diabetes groups.

not stationary and are better described by analytical methods that can quantify variations of amplitude and frequency.
For this reason, the Hilbert transform provides a more informative and accurate tool to examine nonlinear relationship
between nonstationary signals [33].

The instantaneous BP and BFV phases were calculated on a sample-by-sample basis. The BP–BFV phase shift for
each subject was calculated as the average of instantaneous differences of BP and BFV phases over the entire course
of the chosen oscillation cycle(s) to provide statistically robust phase estimates.

2.5. Transfer function analysis

We also assessed cerebral autoregulation using a traditional Fourier-transform-based transfer function analysis [8,
35]. The time series BP and BFV were first linearly detrended and divided into 5000-point (100 s) segments with 50%
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overlap. The Fourier transform of BP (SP ( f )) and BFV(SV ( f )) were calculated for each segment with a spectral
resolution 0.01 Hz, and were used to calculated the transfer function

H( f ) =
SP ( f )S∗

V ( f )

|SP ( f )|2
= G( f )eiφ( f ) (5)

where S∗

V ( f ) is the conjugate of SV ( f ); |SP ( f )|2 is the power spectrum density of BP; G( f ) = |H( f )| is the transfer
function amplitude (gain); and φ( f )is the transfer function phase at a specific frequency f . The amplitude and the
phase of the transfer function reflect the linear amplitude and time relationship between the two signals. The reliability
of these linear relationships can be evaluated by coherence that ranges from 0 to 1:

C( f ) =
|SP ( f )S∗

V ( f )|2

|SP ( f )|2|SV ( f )|2
. (6)

It has been proposed that a coherence value <0.5 indicates a nonlinear BP–BFV relationship and engagement
of autoregulation [8,35]. The estimates of BP–BFV relationship based on transfer function become unreliable for
coherence values approaching zero.

Average coherence, gain, and phase were calculated in the frequency range <0.07 Hz in which the cerebral
autoregulation was assumed to be most effective [8,15]. Transfer function analysis was also performed in the same
frequency range as the observed dominant spontaneous oscillations in BP and BFV for comparison with the MMPF
results (Table 3).

2.6. Receiver operating characteristic analysis

To compare the performances of the MMPF and transfer function analyses, we used the receiver operating
characteristic analysis [36] to study the sensitivity and specificity of each method in distinguishing control and diabetic
subjects. Briefly, this method chooses a discrimination threshold for BP–BFV phase shifts, and assigns subjects to
the “diabetic” group (above the chosen threshold) or to the “control” group (below the chosen threshold) based on
subjects’ BP–BFV phase shifts. The sensitivity is the percentage of diabetic subjects correctly identified using the
above criteria; and the specificity is the percentage of control subjects correctly identified. By choosing different
values of the discrimination threshold, the sensitivity as the function of the specificity can be obtained. The plot of
sensitivity vs. 1-specificity (receiver operating characteristic curve) is usually used to illustrate the performance of a
method, and the area under the curve is a simple parameter to quantify the performance (Fig. 3). If the sensitivity
is always equal to the specificity (the area under the curve = 0.5), then the method cannot distinguish control and
diabetic subjects at all and thus has the worst performance. If the area value >0.5 and closer to 1.0, it will indicate a
better discriminator between the control and diabetes groups and the method has a better performance.

3. Results

3.1. Mean values

We found no significant differences between the control and diabetic groups in age, body mass index, heart rate, and
BP. The respiration frequency was higher and CO2 lower in the diabetic group (Table 1). Cerebrovascular resistances
were higher in the diabetic group (left side: p = 0.04; right side: p = 0.06). The average value of mean BFV was
smaller in the diabetic group for both left and right sides, but only the group difference for the left side reached
significant level (left: p = 0.04; right: p = 0.06) (Table 2).

3.2. MMPF results

3.2.1. BP–BFV phase shift in healthy subjects
For all healthy subjects, we found dominant oscillations in BP and BFV signals in the frequency range from 5 to

24 cycles/min (from 0.07 to 0.38 Hz: mean ± SE, 0.156 ± 0.015 Hz). These dominant oscillations correspond to the
spontaneous and respiratory fluctuations in BP and BFV, and continuously modulate BP and BFV signals throughout
the entire baseline. Panels 1–3 in Fig. 1A illustrate spontaneous oscillations in BP and right and left BFV signals for



2286 K. Hu et al. / Physica A 387 (2008) 2279–2292

Fig. 2. Phase shifts between spontaneous blood pressure and blood flow oscillations in a low frequency band (<0.1 Hz) and in a high frequency
band (0.1–0.4 Hz). (A) The MMPF results showed that BP–BFV phase shifts in diabetes were significantly smaller than those of controls in both
frequency bands (p < 0.0001). (B) BP–BFV phase shifts obtained from the transfer function analysis showed no difference between control and
diabetes in both low and high frequency bands.

Table 2
Cerebral blood flow measurements during baseline

Group Control Diabetes P

Left systolic flow velocity (cm/s) 79.0 ± 4.1 65.8 ± 3.4 0.007
Left diastolic flow velocity (cm/s) 44.4 ± 2.7 33.8 ± 2.1 0.006
Left mean flow velocity (cm/s) 57.1 ± 2.9 46.2 ± 2.6 0.01
Left cerebrovascular resistance (mmHg s/cm) 1.67 ± 0.11 2.06 ± 0.14 0.04
Right systolic flow velocity (cm/s) 74.1 ± 3.7 61.9 ± 3.6 0.03
Right diastolic flow velocity (cm/s) 40.0 ± 2.4 34.3 ± 3.1 NS
Right mean flow velocity (cm/s) 54.6 ± 3.1 45.5 ± 3.2 NS
Right cerebrovascular resistance (mmHg s/cm) 1.76 ± 0.11 2.18 ± 0.18 NS

Data are presented as mean±SE. P values are for group comparison.

a healthy subject. The phase shifts between BFV and BP can be visualized in extracted dominant oscillations; i.e., the
peak-valley positions of BFV were advanced than those of BP (Fig. 1A, panel 4). Instantaneous BP–BFV phase shifts,
calculated by the Hilbert transform, varied over time (Fig. 1A, panel 5, solid lines). The averages of the instantaneous
phase shifts between BFV and BP (Fig. 1A, panel 5, dashed lines) were positive in all 20 healthy subjects (left side:
37.3 ± 2.4 deg; right side: 38.0 ± 2.8 deg, mean ± SE), indicating that the BFV fluctuations precede fluctuations in
peripheral BP. The BP–BFV phase shifts of left and right sides were highly correlated (R2

= 0.62, p < 0.0001),
indicating no side difference.

We also performed the MMPF analysis in two different frequency ranges: slower frequency range <0.1 Hz that
is traditionally used for assessment of cerebral autoregulation, and faster frequency range 0.1–0.4 Hz to determine
the effects of frequency of spontaneous oscillations on BP and BFV phase shift. Individual BP and BFV oscillatory
cycles corresponding to each frequency range were selected. At the frequencies <0.1 Hz, BP–BFV phase shifts were
56.2 ± 4.0 deg (mean±SE) for the left side and 54.8 ± 4.3 deg for the right side (Fig. 2A). These results were similar
to those observed during the Valsalva manoeuvre, in which BP/BFV oscillations are in the same frequency band
(<0.1 Hz) [17]. At the frequency between 0.1 and 0.4 Hz, BP–BFV phase shifts were 30.0 ± 1.0 deg (mean ± SE)

for left side and 29.2 ± 1.0deg for right side (Fig. 2A). These BP–BFV phase shifts were smaller than those at the
frequency <0.1 Hz (Fig. 2A), and were close to the values obtained from dominant BP and BFV oscillations (Fig. 1C).
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Table 3
Transfer function results

Group 0.01–0.07 Hz 0.1–0.4 Hz
Control (n = 20) Diabetes (n = 20) p Control (n = 20) Diabetes (n = 20) P

Coherence (left) 0.47 ± 0.03 0.54 ± 0.3 NS 0.71 ± 0.03 0.60 ± 0.04 0.05
Coherence (right) 0.45 ± 0.02 0.50 ± 0.4 NS 0.70 ± 0.03 0.58 ± 0.4 0.02
Gain (left) 0.67 ± 0.09 0.67 ± 0.09 NS 1.07 ± 0.06 0.68 ± 0.08 0.0003
Gain (right) 0.65 ± 0.10 0.59 ± 0.08 NS 1.01 ± 0.07 0.63 ± 0.08 0.0006
Phase (left) 36.9 ± 7.2 44.3 ± 7.3 NS 20.6 ± 2.0 19.5 ± 2.3 NS
Phase (right) 44.6 ± 6.7 38.5 ± 8.8 NS 21.3 ± 2.6 22.2 ± 2.1 NS

Data are presented as mean ± SE. P values indicate between group comparisons.

3.2.2. Effects of diabetes on BP–BFV phase shift
For the 20 diabetic subjects, we also identified dominant and continuous spontaneous oscillations in BP and BFV

during baseline in the frequency range from 0.15–0.38 Hz (mean ± SE: 0.25 ± 0.02 Hz) (Fig. 1B, panels 1–3). The
phase shifts between BFV and BP oscillations in diabetic subjects were also positive (Fig. 1B panels 4–5) (mean±SE:
left side, 14.9 ± 2.5 deg; right side, 15.6 ± 2.8 deg), but values were much smaller compared to the control group
for both sides (p < 0.0001) (Fig. 1C). Considering the variations in the frequency of spontaneous oscillations among
subjects and between the groups, we also analysed the BP–BFV phase shifts adjusted for the dominant frequency
in MANOVA. This approach enabled us to identify the effects of diabetes on the BP–BFV relationship that were
independent of the frequency of spontaneous oscillations. The frequency-adjusted BP–BFV shifts were also reduced
in the diabetic group (p < 0.001) compared to the control group. This result is consistent with the results obtained by
one-way analysis of variance between groups (Fig. 1C).

The reduction BP–BFV phase shifts in the diabetes group was also confirmed by analyzing BP and BFV oscillations
in separate two frequency bands (<0.1 Hz and 0.1–0.4 Hz). At the frequency <0.1 Hz, BP–BFV phase shifts in
diabetes (left side: 14.0 ± 4.1 deg; right side: 8.7 ± 4.3 deg) were smaller compared to the control group (left side:
56.2 ± 4.0 deg; right side: 54.8 ± 4.3 deg; p < 0.0001) (Fig. 2A). Similarly, in the frequency range 0.1- 0.4 Hz,
BP–BFV phase shifts were smaller (p < 0.0001) in the diabetes (left side: 11.7 ± 0.8 deg; right side: 12.7 ± 0.8 deg)
than in the control group (left side: 30.0 ± 1.0 deg; right side: 29.2 ± 1.0 deg) (Fig. 2A), which is the same frequency
range of dominant BP and BFV oscillations for the diabetes group.

3.2.3. Other influences on BP–BFV phase shift
Within the diabetic group, no difference in the phase shifts was observed in the six hypertensive diabetic subjects

(left side: 16.2±5.6 deg, p = 0.68; right side: 20.9±4.9 deg, p = 0.20) or in the six diabetic subjects with retinopathy
(left: 13.2 ± 4.0 deg, p = 0.97; right: 17.7 ± 13.2 deg, p = 0.52) compared to other diabetic subjects. Within the
diabetic group, six subjects with retinopathy had longer diabetes duration compared to other diabetic subjects without
retinopathy (p < 0.003). The 10 diabetic subjects with autonomic neuropathy (2 with orthostatic hypotension) had
the similar BP–BFV phase shifts as other diabetic subjects (p > 0.4). We did not find significant effects of age, sex,
mean BP, baseline CO2, hypertension, retinopathy, and side (left vs. right). In addition, we did not find dependence
of the BP–BFV phase shifts on BFV (R2 < 0.001, p > 0.5) or cerebrovascular resistances (R2 < 0.02, p > 0.5) for
both left and right sides. Effects of hemoglobin A1C, diabetes duration, and glucose within diabetic group could not
be reliably identified due to the sample size.

3.3. Transfer function coherence, gain and phases

Transfer function analysis of BP and BFV signals did not reveal significant differences between control and diabetic
subjects in coherence, transfer function gains and phases over the frequency range <0.1 Hz (Table 3 and Fig. 2B). In
the frequency between 0.1 and 0.4 Hz, diabetic subjects had lower coherence and lower gain than control subjects for
both left and right sides (Table 3) but transfer function phase was not different between the two groups.

3.4. Receiver operating characteristic analysis

The receiver operating characteristic analysis showed that the area under the sensitivity-specificity curve for
MMFP-based phase shifts (left side: 0.94 ± 0.04; right side: 0.87 ± 0.06) is larger than those of transfer function
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Fig. 3. Receiver operating characteristic curves for the diabetes prediction using blood pressure–blood flow velocity (BP–BFV) phase shifts
obtained from the multimodal pressure flow method (MMPF) and using transfer function phases (0.1–0.4 Hz). The y axis is the sensitivity,
representing the percentage of diabetes subjects identified; and the x axis is the 1-specificity; i.e., the percentage of control subjects that are
incorrectly identified as diabetes subjects. The areas under the curves closer to 1.0 for BP–BFV phase shifts indicates that the MMPF measure
serves as a better discriminator between the control and diabetes subjects than traditional transfer function analysis.

phases (left side: 0.56±0.09, p < 0.001; right side: 0.56±0.09, p = 0.003) (Fig. 3), indicating the MMPF measures
may serve as a more sensitive biomarker for the diabetes prediction than the traditional transfer function phase.

4. Discussion

4.1. Assessment of nonlinear interactions between nonstationary signals

A major problem in contemporary physiology is the presence of nonstationarities in time series (statistical
properties such as mean and standard deviation vary with time). Nonstationarity is an intrinsic feature of physiological
data in both healthy and pathologic conditions, and are present even without external stimulation [37–39]. Since
traditional analyses are often based on theories that assume stationary time series, various problems related to
nonstationarity are encountered when attempting to extract both static and dynamic properties of physiological
data [40,41]. Therefore, quantification of nonlinear interactions between two nonstationary signals presents a
computational challenge. To resolve the difficulties related to nonstationary behaviour in physiological signals,
investigators have applied concepts and methods derived from statistical physics and nonlinear dynamics [17,42–48].
For example, phase synchronization technique that was used for the assessment of coupling between chaotic oscillators
in physical systems has been modified and applied to study interactions among physiological systems including
cardiovascular system, respiration, locomotor activity, and neuronal activity in brain [45,46,48,49]. These studies
have shown that nonlinear approaches can provide new information about the control mechanisms of physiological
systems that may be difficult to be characterized using traditional approaches. Despite of progress, methods to reliably
quantify nonlinear interactions between nonstationary signals are still lacking.

We aimed to tackle the important generic problem related to nonstationarity by designing and improving
physics approaches to explore nonlinear interactions between peripheral blood pressure and blood flow
velocity in cerebral arteries. In this study we proposed an improved MMPF method to study the nonlinear
BP–BFV phase relationship in healthy and diabetic subjects during supine resting conditions, that is
derived from our previous studies [17,48]. Unlike the traditional Fourier transform-based approaches, we
did not assume BP and BFV as superimposed sinusoidal oscillations of constant amplitude and period
in a preset frequency range. The new analysis uses an adaptive signal processing algorithm, Ensemble
Empirical Mode Decomposition, to extract spontaneous oscillations that are actually embedded in BP and
BFV fluctuations. We showed that the phases of spontaneous BFV oscillations were advanced compared to
the phases of BP oscillations; i.e., flow oscillations preceded systemic pressure oscillations (Figs. 1 and 2).
The BP–BFV phase shifts were similar to those observed during the Valsalva manoeuvre obtained from the MMPF
method [17]. Such positive phase shift has been also reported using Fourier transform methods during head-up tilt, and
was interpreted as a faster recovery of BFV mediated by the compensatory cerebral autoregulatory mechanisms [8,
12,14,50]. Our previous studies showed that the reduction of the MMPF derived BP–BFV phase shifts was associated
with impaired cerebral autoregulation in stroke and hypertensive subjects and in patients with traumatic brain injuries
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[17,51], indicating that MMPF results reflect dynamics of cerebral autoregulation. Here we showed that BP–BFV
phase shifts in diabetic subjects were significantly reduced and closer to zero, resembling that in patients with stroke or
traumatic brain injuries [17,51]. This finding indicates that diabetes is also associated with impairment of dynamical
cerebral autoregulation. At the same time, the phase shift calculated using the univariate transfer function analysis
did not reveal any significant group differences. Consistently we found that the MMPF had a better performance
in discriminating between control subjects and subjects with type 2 diabetes mellitus (Fig. 3). The different results
obtained from the two analyses may be not surprising, considering the fact that the BP–BFV phase shifts of transfer
function analysis are based on the Fourier transform which has limited application for nonstationary BP and BFV
signals and nonlinear BP–BFV relationships. Note that our proposed method is not only applicable for the study of
interactions between BP and BFV. Instead the method and its concepts can be potentially used to explore nonlinear
interactions in other physical and physiological systems.

4.2. Active frequency range of cerebral autoregulation

It has been proposed that cerebral autoregulatory mechanisms act as a high-pass filter-cybernetic model [8,13],
being more active at lower frequencies (<0.1 Hz) and less effective for faster spontaneous fluctuations at respiration
frequency. This model predicts that, for a normal cerebral autoregulation, a very slow oscillation in BP (frequency
approaching zero) will generate an oscillation in BFV with very small amplitude and an advanced phase close to 90
deg while a fast oscillation in BP will be completely transmitted to a BFV oscillation with phase lag close to zero.
Though there is no established physiological neural pathway that can account for the high-pass filter mechanism, the
frequency dependent influence of cerebral autoregulation was supported by many studies that are based on the transfer
function analysis [10,11,15,52]. For instance, it has been shown that average amplitude (gain) of transfer function of
BP and BFV was smaller at <0.07 Hz than at >0.07 Hz, phase had a maximum (∼60 deg) at ∼0.05 Hz, and coherence
of BP–BFV transfer function was close to 1.0 at frequency >0.07 Hz and was smaller (∼0.5) at frequencies <0.07 Hz.
The small coherence at lower frequencies indicates the absence of linear BP–BFV relationship, and was interpreted
as the effect of cerebral autoregulation [10].

It is important to note that coherence, gain, and phase of transfer function are continuous functions of frequency
and do not exhibit apparent transition points at a specific frequency. Thus, the model and transfer function results do
not necessarily indicate that cerebral autoregulation is active and has influence on blood flow regulation only in certain
frequency region. Although many studies selected frequency <0.1 Hz in the transfer function analysis, such choice
of frequency range for the estimation of cerebral autoregulation is somewhat arbitrary. Previous studies showed that
after a sudden blood flow decline, baseline levels can be restored within 3–6 s (corresponding to 0.16–0.33 Hz in
frequency domain) [53,54]. Therefore, there is no reason to refute the notion that cerebral autoregulation can operate
at frequencies >0.1 Hz. Studies of using phase synchronization technique and transfer function analysis also indicated
that the relationship between BP and BFV oscillations at frequency >0.1 is altered in patients with strokes and, thus,
may also provide useful information on cerebral autoregulation [48,55]. In patients with abnormal autoregulation
after a traumatic brain injury BP–BFV phase shift in the frequency range of 0.1–0.3 Hz was around 10 deg (left side
10.2 ± 9.5 deg; right side 11.6 ± 13.3 deg) [51]. Thus, our findings that BP–BFV phase shifts are larger in controls
in the frequency range (0.1–0.4 Hz) supports the notion that cerebral autoregulation may influence pressure-flow
relationship at the frequency >0.1 Hz, as well as at the frequency <0.1 Hz.

Moreover, the transfer function analysis is based on Fourier transform that implicitly assumes stationary signals
composed of sinusoidal oscillations of constant amplitude and period. During physiological recordings, BP and BFV
signals are nonstationary and exhibit dynamic changes over time [56]; i.e., shifts of respiratory frequencies to slower
range, occurrence of spontaneous waves, and etc. Therefore, a single transfer function may be not sensitive enough to
identify the influences of cerebral autoregulation at different time scales and to assess nonlinearities in pressure-flow
relationship using a small sample size of subjects. Furthermore, another intrinsic problem of the transfer function is
that low values of univariate coherences between two signals (e.g., coherence <0.5 for BP–BFV transfer function at
frequency <0.07 Hz) violate the assumption of a linear relationship between two signals and thus may preclude use
of gain and phase as measures of coupling strength between BFV and BP [57].

In the present study, we demonstrated that the BP–BFV phase shifts in both low (<0.1 Hz) and higher frequency
(∼0.1–0.4 Hz) bands may reflect cerebral autoregulation and that such phase shift was significantly reduced in diabetic
subjects, indicating impaired autoregulation. These findings provide additional important evidence to support that
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cerebral autoregulation is a continuous dynamic process, influencing BP–BFV relationship at multiple time-scales
over a larger frequency range. They also suggest that inherent nonlinearities of cerebral autoregulation can be better
described by nonlinear methods such as MMPF [17,48,51], multivariate coherence [57], and general Volterra–Wiener
approaches [56,58,59].

4.3. Assessment of cerebral autoregulation from spontaneous BP/BFV oscillations

Cerebral autoregulation dynamics are usually evaluated by the changes in BFV and BP during the interventions that
induce rapid BP reductions or increases such as the Valsalva maneuver, thigh cuff deflation and the head-up tilt [2,9,50,
60–63]. The conventional approach is valuable, because it allows assessments of the autoregulation responses during
rapid variations in systemic pressure under the stressed conditions. These tests, however, require patient cooperation
and cannot be administered in acute care settings. More importantly, autoregulation is a dynamic process that is always
engaged to control blood flow redistribution in response to local perfusion and metabolic needs during increased
neuronal activity as well as systemic demands. Spontaneous fluctuations in cerebral blood flow reflect coupling of
cardiovascular and respiratory responses to these perturbations. Therefore, there is a critical need to assess dynamics
of autoregulation during spontaneous BP and BFV fluctuations. This issue has been successfully addressed with the
improved MMPF method.

4.4. Dominant spontaneous oscillations in BP and BFV fluctuations

One interesting finding in this study is that the improved decomposition method can reveal dominant oscillations
embedded in spontaneous BP and BFV fluctuations at the frequency between 0.07 and 0.4 Hz. These dominant
oscillations persist continuously in a certain intrinsic mode function for an individual during the entire baseline
recordings. Since averaging over more oscillatory cycles can statistically provide more accurate estimates of BP–BFV
phase shifts, the spontaneous continuous oscillations can potentially enable very reliable assessment of BP–BFV
phase relationship. In addition, extracting these continuous oscillations in a certain decomposed mode function can
be more objective than selecting an individual oscillatory cycle that involves more subjective human judgments. One
concern is that the frequency of dominant BP and BFV oscillations during baseline conditions was between 0.07
and 0.4 Hz, which is traditionally believed to be out of active range of cerebral autoregulation. However, this study
and recent studies [17,51] showed that impairment of cerebral autoregulation in type 2 diabetes, stroke, hypertension
and brain injury have significant influences on the BP–BFV relationship at the higher frequency range (>0.1 Hz)
(see Section 4.2). Encouraged by these findings, we believe that dominant spontaneous BP and BFV oscillations
during resting conditions can be useful and even advantageous for noninvasive assessment of cerebral autoregulation.
Further systematic studies are needed to identify the causes for the presence of dominant oscillations and to determine
the frequency dependence of the BP–BFV phase shift.

4.5. Impairment of autoregulation in diabetes

Diabetes is a complex metabolic disease with significant effects on the systemic and cerebral vasculature [24],
vasomotion and reduced cerebral blood flow and vasoreactivity to CO2 [64]. With impairment of vasoregulation,
spontaneous variations in systemic pressure during everyday activities may perturb cerebral perfusion pressure.
Therefore, older diabetic patients may experience larger fluctuations of perfusion pressure that may have implications
for cerebral hypoperfusion and brain atrophy [65,66]. Consistently, we found in this study that cerebral flow velocity
in diabetes was more passively dependent on blood pressure, as indicated by reduced phase shifts between oscillations
in the two physiological variables during resting conditions.

There are still many important questions on cerebral blood flow regulation in diabetes that could not be rigorously
tested in our study groups due to the small sample size, including the effects of co-morbidities, duration of diabetes
and its control, orthostatic hypotension, haemoglobin A1C, glucose levels, and other diabetes-related risk factors
for cerebrovascular systems. Larger prospective studies are also needed to determine whether these factors affect
dynamic indices of autoregulation and also whether MMPF-based indices of autoregulation have predictive value for
late complications of diabetes.
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5. Conclusions

In conclusion, our results indicate that the BP–BFV phase shift obtained by the improved MMPF method can
be used to assess the nonlinear dynamics of the central blood flow-pressure relationship during supine baseline
conditions. Instantaneous pressure-flow phase shift provides a sensitive and robust measure of impaired autoregulation
in the diabetes group. The proposed method is robust, computationally feasible and has broad applications for
quantification of the instantaneous phase relationship of nonlinear and nonstationary physiological signals.
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