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OBJECTIVE — Diabetes increases the risk for cerebromicrovascular disease, possibly
through its effects on blood flow regulation. The aim of this study was to assess the effects of type
2 diabetes on blood flow velocities (BFVs) in the middle cerebral arteries and to determine the
relationship between white matter hyperintensities (WMHs) on magnetic resonance imaging
(MRI) and BFVs.

RESEARCHDESIGNANDMETHODS — We measured BFVs in 28 type 2 diabetic and
22 control subjects (aged 62.3 � 7.2 years) using transcranial Doppler ultrasound during
baseline, hyperventilation, and CO2 rebreathing. WMHs were graded, and their volume was
quantified from fluid-attenuated inversion recovery images on a 3.0 Tesla MRI.

RESULTS — The diabetic group demonstrated decreased mean BFVs and increased cerebro-
vascular resistance during baseline, hypo- and hypercapnia (P � 0.0001), and impaired CO2

reactivity (P � 0.05). WMH volume was negatively correlated with baseline BFV (P � 0.0001).
A regression model revealed that baseline BFVs were negatively associated with periventricular
WMHs, HbA1c (A1C), and inflammatory markers and positively associated with systolic blood
pressure (R2 � 0.86, P � 0.0001).

CONCLUSIONS — Microvascular disease in type 2 diabetes, which manifests as white mat-
ter abnormalities on MRI, is associated with reduced cerebral BFVs, increased resistance in
middle cerebral arteries, and inflammation. These findings are clinically relevant as a potential
mechanism for cerebrovascular disease in elderly with type 2 diabetes.
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D iabetes is a complex metabolic syn-
drome that increases the risk for
vascular dementia (1) and stroke.

Cerebral microvascular disease in diabe-
tes has been attributed to the effects of
chronic hyperglycemia on capillary struc-
ture (2), endothelial reactivity (3), and

blood-brain barrier permeability, thus af-
fecting regional metabolism and blood
flow regulation (4). Xenon blood flow (5)
and transcranial Doppler ultrasound
(TCD) studies indicate that patients with
type 2 diabetes have impaired cerebrovas-
cular reactivity to hypercapnia (6,7). Sub-

cortical white matter hyperintensities
(WMHs), which are seen as multifocal
and diffuse areas of hyperintensity on T2-
weighted magnetic resonance imaging
(MRI) (8), are strongly associated with di-
abetes, hypertension, and other cardio-
vascular risk factors (9,10). WMHs have
been prospectively linked to dementia,
functional decline, and silent infarcts
(9,11); therefore, WMHs may be manifes-
tations of clinically significant cerebral
microvascular disease.

We aimed to determine whether there
is an independent relationship between
white matter abnormalities on MRI and
cerebral blood flow velocities (BFVs) in
older adults with type 2 diabetes.

RESEARCH DESIGN AND
METHODS — TCD and MRI studies
were conducted in the SAFE (Syncope
and Falls in the Elderly) Laboratory and
at the Magnetic Resonance Imaging
Center at the Beth Israel Deaconess
Medical Center using a General Electric
3.0 Tesla VHI scanner. All subjects were
recruited consecutively and provided
informed consent approved by the in-
stitutional review boards at the Beth Is-
rael Deaconess Medical Center and the
Joslin Diabetes Center. Demographic
and clinical characteristics are summa-
rized in Table 1. The diabetic group
consisted of 28 patients (16 men and 12
women) with type 2 diabetes (duration
2.8 � 11.5 years; means � SD). The
control group consisted of 22 healthy
subjects (12 men and 10 women) who
were normotensive, had normal HbA1c
(A1C) levels, and were not treated for
any systemic disease. All subjects were
screened with a medical history, physi-
cal examination, and standard battery of
autonomic tests (12). Laboratory chem-
istries included routine glucose, A1C,
lipid and renal panels, differential white
blood cell count (WBC), and urine
chemistry panel. Soluble intracellular
adhesion molecule-1 (sICAM-1), solu-
ble vascular adhesion molecule, endo-
thelin-1, and human interleukin-6 were
measured from venous blood samples
using the quantitative sandwich enzyme
immunoassay technique (R & D Sys-
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tems, Minneapolis, MN). C-reactive
protein (CRP) was measured using
high-sensitivity CRP assay Immulite-
1000 (Diagnostic Product, Los Angeles,
CA). Diabetic retinopathy was diag-
nosed in 10 diabetic patients with the
Joslin Vision Network video-digital ret-
inal imaging system, which uses a non-
mydriatic retinal fundus camera that
has been optimized for low–light level
imaging without pupil dilatation (13)
and has been validated against clinical
examination and standard retinal imag-
ing (14).

Subjects with a history of stroke, clin-
ically important cardiac disease, arrhyth-
mia, significant nephropathy, kidney or
liver transplant, renal or congestive heart

failure, uncontrolled hypertension, carotid
artery stenosis �50% by medical history
and magnetic resonance angiography, and
neurological or other systemic disorders
were excluded. Diabetic subjects were
treated with insulin (9), oral glucose-
control agents (12), or diet (7). In 10 hyper-
tensive diabetic subjects (10),
antihypertensive medications were discon-
tinued for 3 days before the study. Medica-
tions affecting autonomic function and
stimulants were not allowed before the
study, but hypoglycemic agents and antico-
agulants were allowed. Studies using the 3.0
Tesla MRI were completed in 17 control
and 24 diabetic subjects. Subjects with
metal implants, pacemakers, arterial stents,
and claustrophobia were excluded.

Transcranial Doppler
ultrasonography
TCD studies were conducted at least 2 h
after the last meal according to the follow-
ing protocol. The subjects rested supine
for 10 min with continuous monitoring of
cardiovascular, cerebrovascular, and re-
spiratory signals in order to establish a
baseline. The subjects hyperventilated to
reduce CO2 to 25 mmHg for 3 min. Then
the subjects breathed a mixture of 5%
CO2 and 95% air from a rebreathing bag
to increase CO2 up to 45 mmHg for 3
min, followed by a 5-min rest.

The middle cerebral arteries (MCAs),
right (MCAr) and left (MCAl), were in-
sonated from the temporal windows with
2-MHz probes using a TCD system (Mul-
tiDop X4; Neuroscan, Sterling, VA). Each
probe was positioned to record the max-
imal BFVs and stabilized using a 3-D po-
sitioning system. Assumptions that MCA
diameter (15) does not change must be
made in order to relate BFV to blood flow.
The electrocardiogram was measured
from a modified lead II or III using a
Spacelab monitor (SpaceLab Medical, Is-
saquah, WA). Beat-to-beat blood pressure
was recorded from a finger with a Fi-
napres device (Ohmeda Monitoring Sys-
tems, Englewood, CO) that reliably tracks
intraarterial blood pressure when con-
trolled for finger position and tempera-
ture (16) and was verified by arterial
tonometry. Respiration and end-tidal
CO2 were measured from a mask using an
infrared end-tidal volume monitor (Datex
Ohmeda, Madison, WI).

Data acquisition and analysis
Electrocardiogram, blood pressure, BFV,
respiration, and CO2 analog signals were
continuously acquired at 500 Hz using
Labview 6.0 NIDAQ (National Instru-
ments, Austin, TX). Heartbeat intervals
were extracted using a peak detection al-
gorithm, and occasional extrasystoles
were removed using linear interpolation.
Systolic, diastolic, and mean BFVs were
detected from the envelope of the arterial
flow waveforms for each heartbeat inter-
val. Beat-to-beat values were averaged
over baseline, hyperventilation, and CO2
rebreathing. A 30-s average was also cal-
culated for the BFV minimum during hy-
perventilation and maximum during CO2
rebreathing. CO2 reactivity was calcu-
lated as a slope of the linear regression of
mean BFV and CO2 between hyperventi-
lation and CO2 rebreathing. Vasodilata-
tion and vasoconstriction reserves were
calculated as the percent increment of

Table 1—Characteristics of the study population

Group Control Diabetes P

Age (years) 63.3 � 7.6 61.5 � 6.8 NS
Sex (male, female) 12, 10 16, 12 NS
Race (White, Asian, African

American)
20, 1, 1 23, 2, 3 NS

BMI (kg/m2) 24.4 � 2.5 27.9 � 4.6 0.002
Diabetes duration (years) 12.8 � 11.5
Hypertension (yes, no) 0, 22 10, 18
Retinopathy (yes, no) 0, 12 10, 13
Orthostatic hypotension (yes, no) 0, 22 5, 23
Cardiac-vagal impairment (yes, no) 1, 21 12, 16
Baseline heart rate (bpm) 65.1 � 9.4 71.9 � 11.9 0.03
Systolic blood pressure (mmHg) 120.3 � 11.1 129.7 � 17.1 0.03
Diastolic blood pressure (mmHg) 64.6 � 10.4 64.9 � 10.0 NS
Smoking (yes, no) 6, 16 11, 17 NS
Alcohol (yes, no) 17, 5 12, 16 0.01
A1C (%) 5.2 � 0.4 7.3 � 1.4 �0.0001
Glucose (mg/dl) 78.5 � 17.0 130.7 � 68.2 0.001
Triglycerides (mg/dl) 140.2 � 73.6 235.2 � 182.0 0.03
Total cholesterol (mg/dl) 224.1 � 50.9 190.5 � 41.4 0.02
HDL cholesterol (mg/dl) 66.6 � 17.2 57.2 � 15.8 0.05
LDL cholesterol (mg/dl) 131.0 � 41.5 95.1 � 29.2 0.001
WBC (K/�l) 5.8 � 1.2 7.3 � 2.0 0.003
Urinary albumin (mg/dl) 3.0 � 4.5 2.9 � 4.4 NS
sICAM-1 (ng/ml) 209.5 � 56.7 273.6 � 118.8 0.05
sVCAM (ng/ml) 770.5 � 183.5 800.6 � 292.8 NS
CRP (mg/l) 2.3 � 3.1 2.3 � 2.0 NS
Interleukin-6 (pg/ml) 1.7 � 0.4 2.2 � 1.8 NS
Endothelin-1 (pg/ml) 0.8 � 0.4 0.8 � 0.2 NS
CO2 reactivity MCAr (cm � s�1 �

mmHg�1)
1.61 � 0.8 1.18 � 0.7 0.05

CO2 reactivity MCAl (cm � s�1 �
mmHg�1)

1.65 � 0.7 1.28 � 0.5 0.05

Vasodilatation reserve MCAr and
MCAl (%)

41.7 � 27.2 25.2 � 15.0 0.04

Vasoconstriction reserve MCAr and
MCAl (%)

�29.2 � 9.5 �28.2 � 14.6 NS

Data are means � SD. P value denotes between-group comparisons. Vasodilatation/vasoconstriction reserve:
% averaged MCAr and MCAl BFV increase/decrease between baseline and hypercapnia/hypocapnia. sVCAM,
soluble vascular adhesion molecule.

Cerebral BFV and periventricular WMHs

1530 DIABETES CARE, VOLUME 29, NUMBER 7, JULY 2006



mean BFV from baseline to the CO2 re-
breathing maximum and to the hyperven-
tilation minimum. Cerebrovascular
resistance (CVR) was calculated as the
mean blood pressure divided by the mean
BFV.

MRI sequences
Anatomical images (T1-weighted inver-
sion recovery fast gradient-recalled echo
[IR-FGR], fluid-attenuation inversion re-
covery [FLAIR], and dual T2-weighted
fast spin echo) and 3-D magnetic reso-
nance time-of-flight angiography were ac-
quired using a General Electric 3.0 Tesla
VHI scanner with quadrature head coil.

Image analysis
Periventricular WMHs present as hyper-
intense areas with �30% increase in sig-
nal intensity on T2-weighted images
compared with adjacent white matter.
Punctuate lesions are well-defined areas
of �2 mm with high signal characteristics
(10). FLAIR images were scored using a
scale of 0–3 (0, no lesions; 1, focal; 2,
beginning confluence; and 3, diffuse in-
volvement of the entire region). Periven-
tricular WMHs and punctuate lesions
were graded on all slices in the anterior,
middle, and posterior cerebral artery dis-
tributions and quantified as a sum, mean,
and maximum grade. High-resolution
T2-weighted FLAIR images were seg-
mented using the thresholding of hyper-
intense pixels and a region growing
method that allowed an accurate WMH
detection without expertise. The brain tis-
sue volumes were computed from the IR-
FGR image using the Brain Extraction
Tools algorithm (17) based on the expec-
tation-maximization segmentation
method (18,19) and was validated using a
phantom model (20). The IR-FGR seg-
mented image was registered on the
FLAIR image (21) to compute the whole
brain and gray and white matter volumes
with the same resolution as WMHs and to
normalize WMHs for the total brain vol-
ume. The graders who processed and
scored images were masked to the sub-
ject and group assignments.

Statistical analysis
Descriptive statistics were used to sum-
marize all variables. Physiological mea-
surements were compared between the
control and diabetic groups and among
conditions (baseline, hyperventilation,
and CO2 rebreathing) using multivariate
ANOVA with multiple measure adjust-

ments and Wilk’s � post hoc tests. One-
way ANOVA and Fisher’s exact test were
used for nonrepeated variables. The �2

test was used to compare WMH distribu-
tion. Stepwise linear and logistic regres-
sion models were used to determine the
relationships between WMHs and the av-
erage resting mean BFVs in both MCAs.
The effects of group (control vs. diabetic),
BMI, baseline systolic blood pressure,
A1C, lipids, inflammation markers, and
age and their interactions with other vari-
ables were also investigated. The effects of
WMHs on CVR and CO2 reactivity were
evaluated using the same approach.

RESULTS

Demographic and laboratory
measures
Table 1 compares the demographic, clin-
ical, and biochemical characteristics be-
tween the control and diabetic groups.
The diabetic group had significantly
higher BMI, glucose, A1C, and triglycer-
ides but had lower total, LDL, and HDL
cholesterol. Diabetes was not controlled
in 18 subjects (A1C 8.1 � 1.2%). Inflam-
matory markers such as sICAM-1 (P �
0.05) and WBC (P � 0.003) were ele-
vated in the diabetic group, but soluble
vascular adhesion molecule-1, endothe-
lin-1, CRP, and interleukin-6 levels were
not different.

Transcranial Doppler study
As shown in Fig. 1, diabetes had signifi-
cant effects on mean BFV and CVR in

MCAr and MCAl during supine baseline,
hyperventilation, and CO2 rebreathing.
Across all conditions, mean BFVs in both
MCAs were lower in the diabetic com-
pared with the control group (P �
0.0001; Fig. 1A and B). For each condi-
tion, BFVs were lower in the diabetic
group during baseline (MCAr and MCAl,
respectively: systolic BFV P � 0.006 and
0.05, diastolic BFV P � 0.04 and 0.005,
and mean BFV P � 0.005 and 0.01), hy-
perventilation minimum (MCAr systolic
P � 0.02, MCAl diastolic P � 0.02, and
mean P � 0.04), and CO2 rebreathing
maximum (MCAr and MCAl, respec-
tively: systolic P � 0.003 and 0.007, dia-
stolic P � 0.01 and 0.002, and mean P �
0.004 and 0.006) (Fig. 1A and B). CVR
was significantly higher in the diabetic
group in all conditions in both MCAs
(Fig. 1C and D). Heart rate (P � 0.03) and
systolic blood pressure (P � 0.03) were
higher in the diabetic group during base-
line. CVR was positively associated with
WMHs normalized for brain volume (P �
0.0001) and with A1C and BMI (P �
0.0004) (R2 � 0.83, P � 0.0001). Mean
BFVs in both MCAs, blood pressure, and
CVR were not different between hyper-
tensive and normotensive diabetic sub-
jects in all conditions. There was a trend
suggesting that autonomic neuropathy
may affect mean BFV values (P � 0.052).

CO2 reactivity was reduced in the di-
abetic group (P � 0.05) (Table 1) and was
negatively associated with glucose (P �
0.01), diabetic retinopathy (P � 0.02),
and normalized WMH volume (R2 �
0.54, P � 0.03).

Figure 1—Comparisons of mean BFVs in the MCAr (A) and MCAl (B) and CVR in MCAr (C) and
MCAl (D) during baseline, hyperventilation minimum (HV-minimum), and hyperventilation
maximum (RB-maximum) during CO2 rebreathing between the control (�) and diabetic (f)
groups. Between-group comparisons for each condition at ***P � 0.006, **0.006 � P � 0.02,
and *0.02 � P � 0.05; comparisons between conditions at #P � 0.0001.
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WMHs on MRI
Figure 2 is an example of WMH segmen-
tation on axial FLAIR slices at the level of
the ventricles for a control (Fig. 2A–C)
and a diabetic (Fig. 2C–E) subject. The
distribution of periventricular WMHs dif-
fered between the diabetic and control
groups (P � 0.0001) and among the fron-
tal, temporal, and parieto-occipital re-
gions (P � 0.0001). Mean WMH grade in
the frontal area was greater in the diabetic
than in the control group (mean 0.09 �
0.3 vs. 1.8 � 0.4, P � 0.01) and was
borderline in the parieto-occipital area in
the diabetic group (P � 0.07). Periven-
tricular and punctuate WMH volume
(5.9 � 5.5 vs. 6.7 � 5.4 cm3) and WMH
volume normalized for brain volume
(0.7 � 0.7 vs. 0.9 � 0.7%) and for white
matter volume (2.1 � 1.9 vs. 2.5 � 2.0%)
were not different between the diabetic
versus control group, respectively. Hy-
pertensive diabetic subjects had a greater
periventricular WMH grade (P � 0.02)
and a greater number of subcortical punc-
tuate WMHs (left temporal P � 0.01,
basal ganglia P � 0.02) than normoten-
sive diabetic subjects, but WMH volume
was not different. Magnetic resonance an-
giography was normal. Brain volumes
and diameters of MCAs and internal ca-
rotid artery diameters were comparable.

Multiple regression analysis
The total periventricular WMH grade was
associated with reduced mean BFV in
both groups (P � 0.0002; Fig. 3A). The
total WMH volume (P � 0.001; Fig. 3B)
and percentage of WMH volume normal-
ized for brain volume (P � 0.0006) were
negatively associated with mean BFV. We
found excellent correlations between the
total WMH grade (sum of all continuous
and punctuate WMHs on the visual rating
scale) and the WMH volume measured on
FLAIR images (P � 0.0001; Fig. 3C), thus
validating visual WMH rating using the
quantitative volumetric WMH measures.

We assessed an independent relation-
ship between WMH and mean BFV during
baseline and determined contributions of
type 2 diabetes and other risk factors.
Mean baseline BFV was negatively associ-
ated with periventricular WMH (P �
0.0001) or normalized WMH volume
(P � 0.0001) and uncontrolled diabetes,
as indicated by A1C (P � 0.01), WBC
(P � 0.05), and sICAM-1 (P � 0.03), and
was positively associated with baseline
systolic blood pressure (P � 0.004)
(whole model R2 � 0.86, P � 0.0001).
This model was controlled for the effects
of age and BMI. CRP was negatively cor-
related with mean BFV (P � 0.008) but

positively associated with age (P � 0.01),
BMI (P � 0.003), and WBC (P � 0.01).

CONCLUSIONS — Type 2 diabetes
exerts complex effects on cerebral micro-
vasculature that may alter cerebral blood
flow regulation. We found a decrease of
mean BFV and an increase of CVR in type
2 diabetic patients during baseline, hypo-
capnia, and hypercapnia. Baseline mean
BFV was negatively associated with
periventricular WMH grade and volume
on T2-weighted images and with A1C and
inflammation markers. WMHs were also
linked with uncontrolled diabetes, ele-
vated CVR, and impaired CO2 reactivity.
The relationship between WMH, uncon-
trolled diabetes and reduced BFV is of
clinical relevance as a potential mecha-
nism for cerebrovascular disease in el-
derly with type 2 diabetes.

Aging is associated with brain atro-
phy, changes in frontal subcortical white
matter, and executive cognitive dysfunc-
tion (9). The CO2 reactivity diminishes
with age, uncontrolled diabetes, and risk
factors for atherosclerosis (22). In com-
munity-living elderly people, blood flow
in the WMHs was lower compared with
normal-appearing white matter but flow
augmentation to acetazolomide was pre-
served (23). Correlations among periven-
tricular hyperintensities, demyelination,
astrocytic gliosis, and dilatation of
perivascular spaces support the theory of
arteriosclerosis (8). Diabetic angiopathy
is characterized by the vessel wall remod-
eling, media hypertrophy and increased
stiffness (24) that may be enhanced by
circulating vasoconstrictors and vascular
inflammation. Diabetic subjects had im-
paired vasodilatation to hypercapnia, but
vasoconstriction to hypocapnia was pre-
served. The MCA diameter was compara-
ble between the groups, similarly to other
human (25) and animal (24) studies.

Diabetes alters the glucose and insu-
lin transfer across the blood-brain barrier
(26,27), thus affecting regional metabo-
lism and microcirculation (4). Chronic
hyperglycemia, which further alters
membrane permeability (26,27) and de-
creases regional blood flow, may lead to
permanent cell damage (25). Therefore,
diabetes seems to be associated with pro-
gressive metabolic disturbance in the ce-
rebrovascular bed that may affect blood
flow and accelerate the white matter de-
generation. Elevated sICAM-1 and WBC
levels in the diabetic group, as well as a
negative correlation between BFV with
CRP and inflammation markers, support

Figure 2—Axial slices at the level of the ventricles for a control (A–C) and a diabetic (D–F)
subject. The three columns represent the FLAIR image (A and D), the WMHs segmentation (B and
E), and the overlay of the segmentation on the FLAIR image (C and F).
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the notion of an active arteriosclerotic
process affecting the cerebrovascular bed.
An elevation of tumor necrosis factor-	
and sICAM-1 accompanied retinal neuro-
nal cell death and blood-brain barrier
breakdown induced by oxidative stress in
experimental diabetes (28). Tumor ne-
crosis factor-	, which depresses endothe-
lium-dependent vasorelaxation, was
increased in diabetic patients with mi-
croangiopathy, indicating a relationship
between endothelium dysfunction and
suppressed production of endothelium-
derived nitric oxide (29,30). Further-
more, elevated plasma hemostatic and
inflammation markers may reflect insulin
resistance and endothelial dysfunction
antecedent to diabetes (31,32).

This study addressed an important
question about the relationship between
WMHs on MRI and BFVs in older adults
with type 2 diabetes. It provided further
evidence that type 2 diabetes is associated
with microvascular disease that may re-
duce cerebral blood flow in elderly peo-
ple. Interventions to treat microvascular
disease and to enhance cerebral blood
flow may play an important role in pre-
venting cerebrovascular complications of
diabetes. Future prospective studies are
needed to determine whether low cere-
bral blood flow is a cause or effect of white
matter disease.
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