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Abstract

Sepsis is a life-threatening reaction to an infection, re-
sponsible for 6 million deaths globally each year. More-
over, this condition is one of the major cost to healthcare.
Our aim is to develop a new technique for the early de-
tection of the sepsis onset. Such an early detection would
allow for the improvement of sepsis outcome.

Our technique is based on the assumption that accurate
and early prediction of sepsis requires to be able to predict
the evolution of the vital signs. This idea was translated
in the use of a recurrent neural network, a Long Short-
term memory (LSTM) network, which was trained to ac-
complish two tasks: the prediction of (i) sepsis and (ii) the
vital signs at time t+6. We assume that the use of this aux-
iliary task allows for a better training of the network given
the low prevalence of sepsis. The network consists in three
modules: (i) an embedding module aiming at providing a
compact representation of the inputs, (ii) a recurrent mod-
ule with three LSTMs layers with highway connection be-
tween each layer (iii) the prediction modules consisting in
linear layers for the prediction of two tasks.

The network achieved a final utility score of 0.309 on the
full hidden test set (0.387 on the test set A, 0.365 on the set
B , and -0.148 on the set C). The team name was ”IADI”.

Further improvements are required before transferring
such an approach into clinical practice.

1. Introduction

Sepsis is a life-threatening reaction to an infection [1],
and is one of the leading causes of mortality and morbid-
ity in Intensive Care Units (ICU) [2, 3]. Moreover, this
condition is one of the major cost to healthcare [4]. It has
recently been shown that the outcome of sepsis is highly
dependent on the timing of the antibiotics treatment [5].
There is therefore a need to develop a technique that is
able to detect the apparition of Spesis as early as possible
in order to speed up the antibiotics treatment and improve
the outcome of this infection. Unfortunately, there exists

actually no technique that have been clinically validated to
predict the apparition of sepsis in ICU patients. Artificial
Intelligence has been touted as being the key for solving
the problem of Sepsis prediction in patients, who are con-
tinuously monitored and for whom huge amount of data
(and therefore information) remained (mostly) untapped.

The 2019 Physionet/Computing in Cardiology chal-
lenge aims at developing new techniques for the early de-
tection of the sepsis onset [6]. Such early detections would
allow for the improvement of sepsis outcome.

2. Methods

2.1. Challenge data

The training set consists in the collection of data from
40,336 individual patients collected in three different hos-
pital systems. Outcome for these patients were provided
on an hourly basis, and was computed according to the
Sepsis-3 guidelines, i.e. a two point change in the Sequen-
tial Organ Failure Assessment (SOFA) score and clinical
suspicion of infection[1].

For each patient, 40 clinical features are provided as a
sequence of measurements with a new sample every hour.
The data were divided into 3 major co-variates defined as
follow: 8 vital signs (Heart Rate, Blood Pressure,...), 26
laboratory values, and 6 demographics (Age,Gender, ICU
length of stay,...). Laboratory values are highly sparse val-
ues, as such co-variates are rarely measured.

2.2. Data preprocessing

First, the input values were linearly normalized between
0 and 1 using extrema values in the training set. Missing
values (NaNs) were replaced by -1, in order to distinguish
missing values from an extremum value.

We decided to apply recurrent neural networks (RNN)
in order to encode the evolution of the patient health. Even
though using RNN, the complexity of the time dependen-
cies involved in the sepsis prediction process might be



complicated to catch. We therefore decided to add a 7-
window long history of vital data to the input. At each
time step, the network is not only informed of the value
monitored at time t but is also reminded of the past 7 val-
ues of the considered feature. By doing so, we expect the
temporal dependencies to be treated not only by the RNN
but also by the linear layers. Furthermore, the RNN is also
expected to capture more complex time dependencies.

Given the sparsity of laboratory values, a binary mask
of presence for these features is added to the input. The
mask contains 0 if a feature is missing and 1 if the value
is monitored. We believe that the presence and presence
rate of those features play a significant role in determining
whether a patient is susceptible or not of developing a sep-
sis, since the measurement of a given lab value is highly
informative of the patient health deterioration.

The different features are then concatenated into a 122-
component vectors which is inputted in our model.

Finally, the labels were extended so to predict the onset
of sepsis with different delays ranging from 1 to 6 hours.
The labels were shifted by 6 hours and, for each time-step,
a vector composed of the next 6 labels was used as the tar-
get instead of only considering the t+6 label of interest. A
flowchart of the label extension is given in figure 1. We
assumed it would be easier to predict the onset of sepsis
with a smaller delay, since the deterioration of the patient
health is more pronounced. We also assumed that training
the network on short delays will facilitate the 6-step pre-
diction. Shorter and longer time horizon were also tried
but none showed significant performances improvements.

Figure 1: Flowchart explaining the label extension for pre-
diction of sepsis from time t+1 to t+6.

2.3. Model architecture

The proposed model is inspired from a model recently
proposed for the detection of acute kidney injury[7].

The proposed neural network can be divided into 3 sub-
modules (see figure 2): (i) an embedding module, com-
posed of several linear layers followed by RELU activa-
tion functions, whose role is to find a compact and lower-
dimensional representation of the input. (ii) This compact
representation is then fed into a recurrent module contain-
ing 3 LSTM layers with skip connections between each
of them, and a post-processing linear layer. This mod-
ule is supposed to model the historical dependencies of

time-series. (iii) The output of the recurrent module is
then fed to two prediction modules. (a) A label prediction
module aims at predicting the next 6 hours probabilities
of developing a sepsis through linear layers. The output
of this module go through a cumulative distribution layer
to assure monotony and is then compared to the ground
truth label vector using the weighted binary cross-entropy
loss function (loss l1). The weights are chosen to com-
pensate for the class imbalance between the number of
positive and null labels. (b) An auxiliary task consisting
in the numerical-vital-features prediction module aims at
predicting the vital data 6 hours ahead. We hypothesised
this multi-task approach results in better generalization and
more-robust representations, especially under class imbal-
ance. The output of the vital features prediction module
are compared with the values at time t+6 when provided.
The L2 loss is used (loss l2). The final loss is the weighted
sum of the two former losses using a parameter α such as:

Loss = α× l1 + (1− α)× l2

Once the network trained, only the last component of
the label-prediction output is kept (corresponding at a t+6
prediction). A softmax is applied to get the probability of
the onset of sepsis at time t+1.

The training set was divided into 4 random sets, each
containing the same amount of patients developing a sep-
sis. 3 sets are used as training sets and the other as vali-
dation set. The validation sets were then used in order to
calibrate the output and to determin the probability thresh-
old leading to the highest Utility score. This process yield
to a threshold of 0.57: if the resulting probability is greater
than the threshold, then the patient is considered at risk and
the associated output label will be 1.

Finally, the 4 trained networks were applied as an en-
semble neural network, the probability outputs were aver-
aged before applying the threshold decision.

2.4. Training

To asses the performance of our model, the whole 4-fold
cross validation process was repeated 10 times by chang-
ing the random splitting. The average and standard devia-
tion were computed for the Area under the receiver oper-
ating curve (AUROC), the area under the precision recall
curve (AUPRC), accuracy, F1 score, and finally the Util-
ity score developed for this challenge. To demonstrate the
utility of the auxiliary prediction module, two models were
evaluated and compared : the first without auxilary task (α
= 1) and the second with the auxilary task (α = 0.75).

The network was implemented with the Pytorch library
and trained using the Adam optimizer. The learning rate
was set to 0.0001, with a batch size of 256. A weight de-
cay of 10−5 was used as L2 penalty. A grid search was



Figure 2: Architecture of the proposed network.

performed to find the hyper-parameters presented here.
Dropouts and batch normalization were also considered
but yielded no improvements.

3. Results

Table 1 assembles the experimental results of the re-
peated cross-fold validation. The mean Utility scores
achieved during the cross-fold validation by the two con-
figurations are respectively 0.386±0.005 for the network
without auxiliary task, and 0.393±0.005 for the network
with the auxiliary task.

The submitted model (network with the auxiliary task)
obtained a utility score of 0.309 on the full hidden test set
(0.387 on the test set A, 0.365 on test set B and -0.148 on
the test set B). The result on the test set A is comparable
to the result obtained during the repeated cross-fold vali-
dation, but not for the results on test set C.

4. Discussion

The benefit of introducing an auxiliary task to guide the
training of the RNN towards the right direction can be
discussed. Even though a higher Utility score is reached
through the use of the auxiliary task, the other four metrics

(AUROC, AUPRC, Accuracy and F1 score) seemed to be
suffering from adding this extra task. The Utility score be-
ing the one to maximize in the scope of this challenge, the
auxiliary task was naturally added to our submission.

The Utility score introduced for this challenge is quite
difficult to interpret in a clinical context. AUPRC and F1
are more easily interpretable metrics. The Utility score
is rewarding TP more than FP, which explains the Utility
score to be around 0.4 with the F1 score being only around
0.1.

With a mean Utility score of 0.393 on the publicly avail-
able dataset, but also a low F1 score (0.12) and AUPRC
(0.09), the proposed architecture does not seem to be ad-
equate for its application in clinical routine. The network
achieves a Sensitivity of 66%, meaning that one third of
sepsis events are currently missed, but is also associated
with high level of false positives, which would only deepen
the problem of false alarms in ICU.

One interesting avenue of research would consist in the
use of high time resolution Heart Rate or Blood Pressure
or even continuously measured Electrocardiogram (ECG)
or Photoplethysmogrma (PPG) data [8]. These additional
features could provide the information needed to make
a step further towards a clinically usable early-sepsis-
predictor model.



AUROC AUPRC Accuracy F1 Utility
α = 1 0.798±0.005 0.095±0.002 0.854±0.009 0.123±0.004 0.386±0.005
α = 0.75 0.793±0.005 0.088±0.003 0.836±0.012 0.117±0.005 0.393± 0.005

Table 1: Results of the repeated cross-fold validation.

Another important problematic with ICU data, and es-
pecially laboratory values comes from their sparsity and
the fact that very few measuremenst are performed. The
fact that a measurment is performed is also informative of
the patient health. Several variants of recurrent neural net-
works have recently been proposed to overcome this prob-
lem, and should be considered for the detection of Sep-
sis [9, 10].

5. Conclusion

We introduced a new Recurrent Neural Network model
for the prediction of Sepsis in ICU patients. The model
was trained for the detection but also with an auxiliary task
consisting in the prediction of the vital sign evolution. The
obtained results do not allow to envision its application in
clinical practice with a low sensitivity and high false pos-
itive rate. A model, which better incorporates the sparse
laboratory values, should yield improved performance.
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