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Abstract

Sepsis is one of the leading causes of death in hospital.
An early detection is crucial to reduce its consequences
and mortality. The challenge of Computing in Cardi-
ology 2019 is addressing this issue by providing about
40,000 records from intensive care unit patients. As clin-
ical measurements are collected at irregular frequencies,
this dataset is missing many observations. Simply discard-
ing missing values is counterproductive. Indeed, it has
been observed that missing data patterns hold relevant in-
formation regarding the patient health state. To take ad-
vantage of this information, we propose a sepsis detection
model incorporating representations of missingness infor-
mation. This model is a recurrent neural network network
composed of two gated recurrent unit (GRU) layers to cap-
ture long-term dependencies and a sigmoid layer to output
a probability of sepsis. First, the model is trained by simply
imputing missing values in the dataset. Then, the dataset
is extended with the pattern of missing values. Finally, the
model with a modified GRU cell taking into account miss-
ing data is evaluated. Our best model achieves an utility
score of 0.00 on the final test set.

1. Introduction

Sepsis is a critical multifaceted complication of an in-
fection. It is a life-threatening condition induced by an
overactive response of the body [1]. Instead of fighting in-
vaders, the immune system starts attacking itself. If not
detected early enough or without proper treatment, it may
trigger damages and dysfunctions in tissues and organs.
Even though the worldwide impact of sepsis remains com-
plicated to establish, it has been stated by the World Health
Organization [2] to affect every year more the 30 million
people with 6 million potential deaths.

In comparison to other diseases, no gold standard test
exists for sepsis diagnosis. It is typically identified from a
set of signs, symptoms and test results. Some clinical tests
can help to detect biomarkers of sepsis [3,4]. However, di-
agnosing sepsis early remains challenging which, in turn,
delays the selection of the optimal treatment. The chal-

lenge of Computing in Cardiology 2019 [5] is addressing
the issue of early sepsis detection by providing a dataset
including vital signs, laboratory test results, demograph-
ics collected from intensive care unit patients in different
hospitals.

In healthcare, medical records typically include obser-
vations measured irregularly over time, across variables
and patients. Assuming that the interval between clini-
cal measurements is linked to the rate at which vital pa-
rameters vary, the pattern of observations might carry rich
information regarding a person’s health. This concept is
referred as informative missingness, indicating a correla-
tion between target labels and missing rate or pattern. A
relation verified recently in [6].

Handling missing values in a proper way is critical for
the task performance and induces theoretical and com-
putational challenges. The majority of machine learning
models are not designed to take them into account. Dif-
ferent methodologies were presented to tackle this issue
[7]. The simplest approach is probably to exclude missing
data, which consequently reduces the number of training
samples available. Another possibility is data imputation,
which consists of replacing gaps with substitute values. It
can be substituting the missing observation by the mean of
the variable computed across the training samples. By tak-
ing into account the temporal characteristic of time-series
and presuming that a medical record is almost identical as
its previous measurement, missing values can be replaced
using forward imputation. However, informative missing-
ness is not exploited with such approaches. Lipton et al.
[8] proposed to add a binary mask to indicate missing val-
ues and the delays since the previous measurements to the
inputs. Che et al. [6] suggested another method to deal
with missing data. They incorporate a decay mechanism
to a gated recurrent unit (GRU) and use masking and time
intervals as missing pattern representations.

The main goal of this work is to investigate approaches
dealing with missing values for recurrent neural networks
(RNN) and explore the potential of missingness informa-
tion for the task of sepsis detection.



2. Methods

2.1. Dataset

The training data for the challenge includes 40,336
records from ICU patients of two different hospitals. Data
from another hospital system remains censored and are
used for grading. The data of the n-th patient, with
n ∈ {1, ..., N}, is represented as multivariate time-series
Xn ∈ RT×D withD variables of length T . It combines 40
variables including demographics, vital signs and labora-
tory measurements. The vital signals and laboratory mea-
surements are sampled every hour. The value xdt denotes
to the t-th observation of the d-th variable. A binary tar-
get yt ∈ {0, 1} is associated with each time interval. It
indicates the onset of sepsis according to the Sepsis-3 def-
inition [1], with 0 for non-sepsis and 1 for sepsis. It is
important to mention that the sepsis label is shifted by six
hours. The task of the challenge is to predict sepsis six
hours ahead.

Several aspects of this dataset are challenging. In par-
ticular, the irregularity of clinical measurements leads to
many missing values in the dataset. Some variables are en-
tirely missing for some patients, while others have differ-
ent sampling frequencies across patients and time. Treat-
ing them appropriately is likely a key element for accurate
sepsis prediction. Another issue is the imbalanced classes,
with only 7.3% sepsis patients over the whole training
dataset.

2.2. Data Preprocessing

Features are extracted based on their relevance for sep-
sis detection task and their missing rate. Features used in
the Sepsis-3 definition [1] are included. Then, a feature is
excluded if either its average missing rate over the training
set is larger than 93% or it has no measurement for 90% of
the patients. In total, 18 features were selected, including
vital signs, laboratory values, and demographics. They are
listed in Table 1 and described in [5].

Table 1. List of selected features with references.
Vital signs Laboratory Demographics

HR - 90 bpm HCO3 - 26 mmol/L Age
O2Sat - 97.5 % FiO2 - 0.21 mmol/L Gender
Temp - 37 °C pH - 7.4 ICULOS
SBP - 120 mmHg Creatinine - 0.9 mg/dL
MAP - 94.7 mmHg Glucose - 90 mg/dL
DBP - 80 mmHg Hgb - 15 g/dL
Resp - 16 breaths per min WBC - 7.7 103/µL

Platelets - 275 103/µL

The following pre-processing steps are applied before
feeding the inputs to the model. For vital signs and labora-

tory values, normalization is performed using a reference
value, which are defined by experts [9] for each feature,
see Table 1. For demographic variables, the mean com-
puted over the training set is used for normalization.

Representations of missingness are associated with each
multivariate time series Xn. A binary mask is used to in-
dicate which features are observed or missing at each time
step. In addition, a array of time interval reveals the dura-
tion since the last observation for each features. The binary
mask of the n-th patient, Mn ∈ {0, 1}T×D is composed of
elements md

t defined as follows

md
t =

{
1 if xdt is observed,
0 otherwise.

(1)

Each entry δdt of the corresponding time intervals ∆n ∈
RT×D is computed as

δdt =


st − st−1 + δdt−1 t > 1, md

t−1 = 0

st − st−1 t > 1, md
t−1 = 1

0 t = 1

(2)

where st represents the time-stamp of the t-th observation.
In a first approach, missing values are imputated follow-

ing two methods. Based on the assumption that a variable
without any measurement is probably considered by the
clinical staff to be in the physiological range, it is substi-
tuted by a reference value xdref .

xd = xdref ifmd
t = 0 ∀t

Otherwise, it is the temporal structure which is exploited.
A clinical measurement is assumed to be almost identical
to the previous one. Missing values are imputated in a fill
forward manner using the last observation xdt′ .

xdt = xdt′ ifmd
t = 0

In a second approach, as the idea is to consider the missing
pattern, gaps are filled with zeros for computational pur-
poses.

The 40,336 records are partitioned into training, vali-
dation, and test sets. The subsets are stratified with the
sepsis label, in order to have the same proportion of sepsis
and non-sepsis cases in each set. The train set (70% of the
records) is used to fit the model. The validation set (15% of
the records) to tune the hyper-parameters. The remaining
15% of the records are kept to finally evaluate the model
on unseen data.

During the learning and optimization process, instead of
loading the whole training set at each iteration, a batch of
samples is given to the model. As the sequences do not
share the same length, zero-padding is required to equalize
the sequence length in each batch.



2.3. Sepsis Detection Model

A model based on a RNN was selected as this class
of networks have achieved state-of-the-art performance on
numerous time series processing tasks. Such neural net-
works were designed to capture temporal dependencies
and to handle sequences of different lengths. Its outputs
are recursively calculated from given inputs xt and pre-
viously computed states ht. GRU [10], a type of RNNs,
was designed to adapt and capture dependencies at differ-
ent time scales. The potential of such model is investigated
here for early sepsis detection.

The baseline model implemented for the challenge takes
as inputs the imputated data [Xn]. It is a RNN composed of
two GRU layers with 100 hidden units each and a dropout
rate of 0.3, followed by a fully connected layer with sig-
moid activation function as prediction layer. The model
is trained over 30 epochs by minimizing the cross-entropy
with the Adam optimizer [11] having a learning rate of
0.002. As the number of records with and without sepsis
are not balanced, the updates for each class are weighted.
The weights are computed by dividing the number of sam-
ples of the largest class (here non-sepsis) by the number
of samples of the given class. In addition, the following
hyper-parameters are tuned with Bayesian optimization:
number of GRU layers, number of hidden units, and learn-
ing rate.

The second approach is based on [8] and adds a binary
mask indicating missing features (1). Data and mask are
concatenated into a single vector [Xn;Mn] that is fed to
the network. A model similar to the previous one with
equivalent parameters is trained using this augmented fea-
tures space. This model is referred to as GRU-mask in the
rest of the paper.

Clinical data are typically characterized by the fact that
inputs have less impact and tend towards a given value
when last observations happen a long time ago. Such prop-
erties can be captured using a decay mechanism and are
introduced in a modified version of a GRU cell, similar to
the one proposed in [6]. The structure of the GRU decay
(GRU-D) cell is illustrated in Figure 1.

Figure 1. GRU-D cell

There are two decay rates, which are computed follow-
ing the equation below. The idea is to learn them during
the training and not to have them previously defined.

γt = exp {−max (0,Wγδt + bγ)}

First, inputs are decayed over time toward the empirical
mean x̃d. Which is computed over the whole training set
and applied to the training and test sets. The input decay
rates are ensured to be independent for each variable by
forcing γxt

to be diagonal.

x̂dt = md
tx
d
t +

(
1−md

t

) (
γdxt

xdt′ +
(
1− γdxt

)
x̃d
)

To gain further information from the missingness pattern, a
decay term is also applied to the extracted features, known
as hidden states.

ĥt−1 = γht
� ht−1

The GRU-D update functions are defined as follows.

rt = σ(Wrx̂t + Urĥt−1 + Vrmt + br)

zt = σ(Wzx̂t + Uzĥt−1 + Vzmt + bz)

h̃t = tanh(Wx̂t + U(rt � ĥt−1) + V mt + b)

ht = (1− zt)� ĥt−1 + zt � h̃t
A final model based on this modified GRU cell is com-
posed of two GRU-D layers with 100 hidden units fol-
lowed by a fully connected layer with sigmoid activation
function as prediction layer. For comparison purposes, it
is trained in a similar manner as the models described pre-
viously. This model takes as inputs the data, the mask and
the time interval [Xn;Mn; ∆n].

2.4. Model Evaluation

All models are evaluated on the same training, vali-
dation, and test partitions. The metrics reported are the
area under the receiver operating characteristic curve (AU-
ROC), the area under the precision-recall curve (AUPRC),
the accuracy, the F-measure, and the utility score. This last
metric was created for the challenge [5]. The utility score
rewards early predictions while penalizing erroneous, late
or missed predictions and takes values in the range [−2, 1].
Final grading is performed by the challenge organizers us-
ing the utility score and a private dataset collected in a third
hospital.

3. Results

The three model configurations are trained and evalu-
ated on the challenge data. Their performance metrics
measured on the training, validation, and test set are re-
ported in Table 2. GRU and GRU-mask models obtain
similar scores on the training and validation sets. However,
the scores computed on the test set indicate that the mask
helped to reduce overfitting. This effect is clearly marked
for the utility score which decreases sharply for the GRU



model. The GRU-D model achieved higher AUROC and
utility scores than the two previous models. While, its ac-
curacy was lower. It seems that GRU-D model is the most
resilient to overfitting as the scores obtained on the three
sets are very similar. However, it did not generalize well
on data from an other hospital as it achieved an utility score
of 0.00 on the set used for ranking challenge entries.

Table 2. Performance on training, validation and test sets.
Metrics GRU GRU-mask GRU-D

Training

AUROC 0.70 0.70 0.78
AUPRC 0.08 0.08 0.08
Accuracy 0.89 0.89 0.78
F-measure 0.12 0.12 0.10
Utility 0.26 0.27 0.30

Validation

AUROC 0.70 0.67 0.76
AUPRC 0.09 0.09 0.08
Accuracy 0.83 0.90 0.76
F-measure 0.09 0.14 0.08
Utility 0.22 0.25 0.29

Test

AUROC 0.67 0.68 0.76
AUPRC 0.09 0.10 0.07
Accuracy 0.83 0.93 0.73
F-measure 0.08 0.16 0.09
Utility 0.16 0.26 0.29

4. Discussion

This paper presents an approach for the task of early
sepsis detection in the context of the challenge of Comput-
ing in Cardiology 2019. The potential of GRU networks
and missingness information is investigated for this prob-
lem. From the given dataset, 18 features from vital signs,
laboratory values, and demographics are selected for this
task. Representations of missing values can be associated
to each record in the form of a binary mask and time inter-
vals between measurements. They are here incorporated to
the model either as additional features (GRU-mask) or by
using decay mechanisms (GRU-D). The performance met-
rics computed on the training, validation, and test sets in-
dicate that including missingness information helps to re-
duce overfitting. In particular, the GRU-D model obtained
a utility score of 0.29 on the test set, almost identical to the
values obtained on the training and validation sets. How-
ever, it did not generalize well on the final dataset.

Since this dataset is from another hospital, it is likely
that the performance is a bit lower than the one obtained
on the test set from available data. The gap between test
and final scores indicates the presence of overfitting and
poor generalization. GRU-D model achieves good perfor-
mance as long as the patient comes from a hospital from

which data where used during the training. Taken together,
these results suggest that the procedures for diagnosing
sepsis might be different across institutions. No specific
guideline exists for recordings and decisions are often took
based on clinicians intuitions.

Even though the outcomes show some overfitting on
the final dataset, the approach of informative missingness
remains promising and further investigations should be
carried on. Training such model involves many hyper-
parameters which affect the global performance. In or-
der to enhance the network, extensively tuning the hyper-
parameters should be considered. Changing the network
structure or adding more features might also help to im-
prove the performance and reduce overfitting.
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[10] Cho K, van Merriënboer B, Gulcehre C, Bougares F,
Schwenk H, Bengio Y. Learning phrase representations us-
ing rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv14061078 2014;.

[11] Kingma DP, Ba J. Adam: A method for stochastic opti-
mization. arXiv e prints 2014;arXiv:1412.6980.

Address for correspondence:

Clémentine Aguet
CSEM SA
Rue Jaquet-Droz 1, 2002 Neuchâtel, Switzerland
clementine.aguet@csem.ch


