
Cardiac Abnormality Detection in 12-lead ECGs With Deep Convolutional
Neural Networks Using Data Augmentation

Lucas Weber1, Maksym Gaiduk1, Wilhelm Daniel Scherz1, Ralf Seepold1, 2

1 HTWG Konstanz, Konstanz, Germany
2 I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation

Abstract

A residual neural network was adapted and applied to
the Physionet/Computing data in Cardiology Challenge
2020 to detect 24 different classes of cardiac abnormali-
ties from 12-lead. Additive Gaussian noise, signal shifting,
and the classification of signal sections of different lengths
were applied to prevent the network from overfitting and
facilitating generalization. Due to the use of a global pool-
ing layer after the feature extractor, the network is inde-
pendent of the signal’s length. On the hidden test set of the
challenge, the model achieved a validation score of 0.656
and a full test score of 0.27, placing us 15th out of 41 of-
ficially ranked teams (Team name: UC Lab Kn). These
results show the potential of deep neural networks for ap-
plication to raw data and a complex multi-class multi-label
classification problem, even if the training data is from di-
verse datasets and of differing lengths.

1. Introduction

Cardiovascular disease is the leading cause of death
worldwide [1]. Due to the severe impact on the health-
care system, early and efficient detection of cardiovascu-
lar diseases is desirable [2]. The electrocardiogram (ECG)
is a useful tool for detecting different cardiovascular dis-
eases [3]. The Physionet/Computing in Cardiology Chal-
lenge 2020 [4] focused on automated, reproducible ap-
proaches for classifying cardiac abnormalities from 12-
lead ECGs. Our best entry applied a convolutional neu-
ral network (CNN) to detect different abnormalities auto-
matically. Our works main focus was on different meth-
ods to facilitate the network’s generalization performance,
mainly implemented using different generic data augmen-
tation methods. Also, we adapted the network to be inde-
pendent of different input sizes.

2. Methods

2.1. Data preprocessing

The overall challenge dataset contained overall 43101
signals of varying lengths from five seconds up to 30 min-
utes. The signals vary in the sample rate and the gain value,
which maps the saved values to their physical value coun-
terparts. Due to this variety, all signals have been resam-
pled to most common frequency of 500 Hz using Fourier
resampling. In the following, all given amounts of sam-
ples correspond to signals with a sampling rate of 500 Hz.
In order to accomplish comparable signal amplitudes, all
signals were divided by their associated gain value. After
these initial steps, the signals were filtered in two consec-
utive steps to deal with outliers and unnecessary frequen-
cies.

Outlier detection Due to unknown measurement per-
turbations, multiple occurrences of high valued outliers in
the data range in duration from a few samples to a few
hundred samples. Because of their high numerical values,
these perturbations would significantly interfere with the
applied convolutions’ training and recognition process. We
apply a uniform filter with a length of 50 samples (0.1 s)
to each lead, effectively generating each signal’s baseline.
We replace every sample that differs more than 2.5 mV
from this baseline with the signal mean. After this step,
we also apply a median filter with a length of 5 samples
(0.01 s) to smooth the signal.

Frequency filtering Most of the diagnostic information
of the typical ECG is embedded in a frequency range from
0.5 Hz up to 50 Hz. We apply a second-order butter-worth
bandpass filter with cut-off frequencies at 0.5 and 45 Hz to
extract this frequency information.

2.2. Network structure

Deep residual neural networks [5] have proven them-
selves in various computer vision tasks. Due to their skip
connections, even profound networks can be trained. In
our algorithm, we also apply a residual network with a



INPUT

N x Conv1xW

2xN x Conv1xW

2xN x Conv1xW

2(d+1)x Conv1xW

2(d+1) x Conv1xW

2(d+1)xN x Conv1xW

2(d+1)xN x Conv1xW

M

d
∈
{
0
...D
−

1}

2(D+1)xN x Conv1xW

2(D+1)xN x Conv1xW
M

Max. Pooling

FC [2(D+1)xN + 2]x24

OUTPUT

Figure 1. Sketch of the applied neural network.

few changes to its structure. As sketched in figure 1, the
applied network has an initial starting block composed of
three convolutions, the latter two having skip connections.
After that, there are D repetitions of M normal blocks, con-
sisting of two convolutions with stride one each, plus a bot-
tleneck layer where the stride is three, and the number of
features gets doubled every repetition to downsize the sig-
nal. After this repeatable structure, there follow M normal
blocks. After this layer, there is global max-pooling for
each feature, which enabling the network to be indepen-
dent of different signal lengths and will be explained in de-
tail in section 2.3. After this, a fully connected layer with
one hidden layer acts as a classifier. All applied convolu-
tions have the same width W, and the padding calculates as
W/2−0.5. Dashed lines symbolize skip connections. Our
changes to a residual neural network’s standard structure
are twofold and mostly concerned with the network being
independent of signal length during training.

1. No intermediate pooling layers, and batch norm.
2. One global pooling layer.

All hidden layers utilize exponential linear unit (ELU) as
an activation function; only the final output of the fully
connected layer is processed with a sigmoid function as
activation in order to generate probability like values in the
range of zero to one. The network input is a 12-lead ECGs
as an array with the dimension of [12xS], with S corre-
sponding to the number of samples. The fully connected
layer received the 2(D+1) × N features plus age and sex of
the patient coded as integers. The features from the convo-
lutional part of our network and the patient information are
concatenated. If either one of these has no information in
the header file, they are coded as −1. Our final submission
had a depth D of three, a normal block repetition number
M of five, and a kernel width W of five.

2.3. Input size independence

Due to the nature of the convolution, convolutional lay-
ers can be applied to inputs of different sizes. So the ini-
tialization and definition of those layers are independent
of the given input size. Only the fully connected layers,
which are widely used as classifiers at the end of neural
networks, are dependent on the convolutional layers’ out-
put size, which are commonly seen as feature extractors.
Following this definition as feature extractors, the final out-
put of our convolutional part can be seen as 2(D+1) × N
features and their matching probability at different posi-
tions in the signal. With a similar idea as in [6], we ap-
ply a global pooling layer, instead of the standard aver-
age pooling layer, that extracts the maximum probabil-
ity of each feature matching somewhere in the signal, in
essence, keeping the highest matching value for every fea-
ture. This approach makes the application of batch normal-
ization very difficult. We forward each signal individually
for training, accumulate the gradients, and divide the final
loss by our batch size before triggering the backpropaga-
tion (similar to how most loss functions deal with batch
size reduction).

2.4. Data augmentation methods

Data augmentation has been shown to improve neural
network training and generalization performance signifi-
cantly [7]. Data augmentation aims to multiply training
data and reduce overfitting by adding different perturba-
tions to the network input. We applied five different meth-
ods to improve model performance (see figure 2). Most
methods need to be parameterized in a suitable way to pre-
vent losing necessary information. All our methods can
be applied during runtime with reasonable computational
overhead. The augmentation methods can be listed as fol-
lows:



Shifting

CutOut

Slicing

Noise

DropOut

Figure 2. Visualization of applied data augmentation
methods.

1. Signal slicing.
2. CutOut [7].
3. Channel shifting.
4. Additive noise.
5. Dropout [8].

Signal slicing Due to the network’s ability to deal with
different input sizes, we can feed the network with differ-
ent parts of every signal, which also have different num-
bers of samples. So the network sees different parts of each
signal every epoch. In our view, this prevents the network
from overfitting, i. e. memorizing, certain parts of a signal.
We create slices with a maximum length of 10000 samples
(20 s) to prevent memory shortage in the GPU during train-
ing. The slicing samples are the same for all channels to
keep the timing relations between the leads. The minimum
signal length is either the signal’s length if it is shorter than
4000 samples or exactly 4000 samples. During testing, we
feed the network the whole signal. If the signal is longer
than 10000 samples, we slice the signal in equal duration
parts and predict each slice class. The overall score for this
signal is then computed as the mean overall predictions.

CutOut [7] is a gold standard augmentation technique
for many computer vision tasks. Despite the simplicity,
it has improved performance on almost all applications.
The central concept is to mask parts of the input data and
counteract memorizing and overfitting. During training,
we mask every lead independently with a probability of 35
%. The masking size is random and calculated indepen-
dently for every channel with a length of zero samples to a
maximum of 20 % of the signal length. The mask value is
equivalent to the signal mean to introduce as little discon-
tinuities as possible to the signal course.

Shifting Since the ECG is an approximately periodi-
cally signal, we apply random length signal shifting to the
ECG. It is implemented as a circular motion, where parts

that are shifted out at the end will be patched in at the be-
ginning of the signal. The main parameter is the maximum
shifting length. We applied two different versions of this
method. In one version, all channels are shifted the same
random amount of samples. For this version, we shift for
a maximum amount of 500 samples. The second version
applies the shifting to each channel independently. Here
the maximum amount of shifted samples are parametrized
as five.

Additive noise Adding small noise to the network’s in-
put is standard for most applications [7]. We apply addi-
tive white gaussian noise with a maximum amplitude of 20
µV.

DropOut [8] is a standard method to counteract over-
fitting by dropping single neurons in the hidden layers of
fully connected classifiers. We apply DropOut with a prob-
ability of 50 %.

2.5. Network training

We trained our models using a Tesla K40 GPU (Ama-
zon Webservices (AWS)) employing PyTorch as a deep
learning framework. An Adam optimizer guided our opti-
mization with a learning rate of 1e− 4 and a weight decay
of 1e − 5. We applied the binary cross-entropy function
as a loss function to deal with the multi-class-multi-label
classification problem. Due to our unique signal length in-
dependence, we could not apply batched training but fed
every signal separately through the network, while accu-
mulating the gradients and the loss. After reaching the de-
sired batch size of 64, we divided the loss by this amount,
i.e., calculating the mean, and made an optimizer step. Af-
ter that, we reset the gradients for every layer. We saved
the model parameters based on the sum of AUROC and
AUPRC during training on a left out validation dataset. We
used 90 % of the data for training and 10 % for validation
for our best model.

2.6. Network evaluation

As already mentioned, we evaluated the models during
training using AUROC and AUPRC. These values mea-
sure model performance without the dependency on a de-
cision threshold, while other values like accuracy and the
challenge metric are snapshots of the model capability for
one threshold. The threshold is a limit value, which de-
cides for one class, whether the sample is positively clas-
sified or not. As there is one output probability for every
class, the threshold relates to the minimum class proba-
bility that a sample needs to be classified positively. We
chose 0.071 as the threshold over all classes by maximiz-
ing the challenge metric on the validation data set for the
cross-validated models. The challenge metric is a newly
developed metric by Perez Alday et al. [4] which weighs



diagnosis based on severity and similarity in treatment for
different abnormalities.

3. Results

We evaluated our model locally using five-fold cross-
validation on the training data. The model training on our
hardware took about twelve hours per model. On the hid-
den test set, the network achieved a challenge metric of
0.27. The detailed results on the hidden test can be found
in Table 1. Besides a single network, we also employed the
models gained by cross-validation as an ensemble model,
where we merged the decisions using a mean. We kept
10 % of testing data as a validation set for local testing
and trained four models using four-fold cross-validation.
Unfortunately, we could not test the ensemble on the hid-
den test set due to runtime restrictions for model training.
Compared to our model trained with full data augmenta-
tion, we also trained the model without any data augmenta-
tion, but still with signal length independence. The results
can be seen in Table 2.

Table 1. Detailed results of our model on the hidden test
set of the challenge.

Validation Set 1 Set 2 Set 3 Full
0.656 0.840 0.300 0.190 0.270

Table 2. Mean of the results from the five-fold cross-
validation for our models with and without data augmen-
tation. The last row states the results of the ensemble.

AUROC AUPRC Challenge Metric
w/o aug. 0.943 0.567 0.602
with aug. 0.947 0.577 0.611
Ensemble 0.970 0.611 0.642

4. Discussion and Conclusion

We have presented a network capable of detecting dif-
ferent cardiac abnormalities in a diverse dataset of 12-lead
ECG data. We showed that a residual neural network
with minor modifications is capable of learning features
from raw ECG signals with varying lengths. Our model
reached the 15th of 41 officially ranked entries (Team
name: UC Lab Kn). As reflected in the results, data aug-
mentation improved generalization performance. Future
research will be twofold. On the one hand, we will look
further into data augmentation methods and their impact on
training. On the other hand, further comparison with other
network structures, e.g., fully convolutional networks in-
dependent of different input sizes, will be done. Also, we

observed that ensembles of networks with different sub-
sets of training data were able to push classification per-
formance. Ensemble models are known to enhance perfor-
mance from other machine learning techniques [9].

Acknowledgments

This research was partially funded by the EU Interreg
V-Program ”Alpenrhein-Bodensee-Hochrhein”: Project
”IBH Living Lab Active and Assisted Living”, grants
ABH40, ABH41 and ABH66 and a SJR grant from the
HTWG Konstanz.

References

[1] Virani SS et al. Heart Disease and Stroke Statistics—2020
Update: A Report From the American Heart Association.
Circulation 2020;141(9):E139–E596. ISSN 0009-7322.

[2] Ribeiro AH et al. Automatic Diagnosis of the 12-Lead ECG
using a Deep Neural Network. Nature Communications
2020;11(1):1760. ISSN 2041-1723.

[3] Kligfield P et al. Recommendations for the Standardiza-
tion and Interpretation of the Electrocardiogram. Circulation
2007;115(10):1306–1324. ISSN 0009-7322.

[4] Perez Alday EA et al. Classification of 12-lead ECGs: the
PhysioNet/Computing in Cardiology Challenge 2020. Phys-
iol Meas 2020;2020.08.11.20172601.

[5] He K et al. Deep Residual Learning for Image Recognition.
In CVPR, volume 2016-Decem. IEEE. ISBN 978-1-4673-
8851-1. ISSN 10636919, 2016; 770–778.

[6] He K et al. Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition. In Lecture Notes in Com-
puter Science, volume 8691. ISBN 9783319105772, 2014;
346–361.

[7] Shorten C , Khoshgoftaar TM. A Survey on Image Data
Augmentation for Deep Learning. Journal of Big Data 2019;
6(1):60. ISSN 2196-1115.

[8] Gal Y , Ghahramani Z. Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning.
33rd International Conference on Machine Learning ICML
2016 2015;3:1651–1660.

[9] Biau G. Analysis of a Random Forests Model. Journal of
Machine Learning Research 2010;13(5):1063–1095. ISSN
1532-4435.

Address for correspondence:

Lucas Weber
Alfred-Wachtel-Str. 8, 78462 Konstanz, Baden-Württemberg,
Germany
Lucas.Weber@htwg-konstanz.de


	Introduction
	Methods
	Data preprocessing
	Network structure
	Input size independence
	Data augmentation methods
	Network training
	Network evaluation

	Results
	Discussion and Conclusion

