Waveform Database Software Package (WFDB) for Python 4.1.0
(45,845 bytes)
import datetime
import functools
import math
import os
import posixpath
import struct
import numpy as np
import pandas as pd
from wfdb.io.annotation import Annotation, format_ann_from_df, wrann
from wfdb.io.record import Record, rdrecord, SIG_UNITS
from wfdb.io import _url
from wfdb.io import download
def read_edf(
record_name,
pn_dir=None,
header_only=False,
verbose=False,
rdedfann_flag=False,
encoding="iso8859-1",
):
"""
Read a EDF format file into a WFDB Record.
Many EDF files contain signals at widely varying sampling frequencies.
`read_edf` handles these properly, but the default behavior of most WFDB
applications is to read such data in low-resolution mode (in which all
signals are resampled at the lowest sampling frequency used for any signal
in the record). This is almost certainly not what you want if, for
example, the record contains EEG signals sampled at 200 Hz and body
temperature sampled at 1 Hz; by default, applications such as `rdsamp`
will resample the EEGs (and any other signals in the record) at 1 Hz. To
avoid this behavior, you can set `smooth_frames` to False (high resolution)
provided by `rdrecord` and a few other WFDB applications.
Note that applications built using version 3.1.0 and later versions of
the WFDB-Python library can read EDF files directly, so that the conversion
performed by `read_edf` is no longer necessary. However, one can still use
this function to produce WFDB-compatible files from EDF files if desired.
Parameters
----------
record_name : str
The name of the input EDF record to be read.
pn_dir : str, optional
Option used to stream data from Physionet. The Physionet
database directory from which to find the required record files.
eg. For record '100' in 'http://physionet.org/content/mitdb'
pn_dir='mitdb'.
header_only : bool, optional
Whether to only return the header information (True) or not (False).
If true, this function will only return `['fs', 'sig_len', 'n_sig',
'base_date', 'base_time', 'units', 'sig_name', 'comments']`.
verbose : bool, optional
Whether to print all the information read about the file (True) or
not (False).
rdedfann_flag : bool, optional
Whether the function is being called by `rdedfann` or the user. If it
is being called by the user and the file has annotations, then warn
them that the EDF file has annotations and that they should use
`rdedfann` instead.
encoding : str, optional
The encoding to use for strings in the header. Although the edf
specification requires ascii strings, some files do not adhere to it.
Returns
-------
record : dict, optional
All of the record information needed to generate MIT formatted files.
Only returns if 'record_only' is set to True, else generates the
corresponding .dat and .hea files. This record file will not match the
`rdrecord` output since it will only give us the digital signal for now.
Notes
-----
The entire file is composed of (seen here: https://www.edfplus.info/specs/edf.html):
HEADER RECORD (we suggest to also adopt the 12 simple additional EDF+ specs)
8 ascii : version of this data format (0)
80 ascii : local patient identification (mind item 3 of the additional EDF+ specs)
80 ascii : local recording identification (mind item 4 of the additional EDF+ specs)
8 ascii : startdate of recording (dd.mm.yy) (mind item 2 of the additional EDF+ specs)
8 ascii : starttime of recording (hh.mm.ss)
8 ascii : number of bytes in header record
44 ascii : reserved
8 ascii : number of data records (-1 if unknown, obey item 10 of the additional EDF+ specs)
8 ascii : duration of a data record, in seconds
4 ascii : number of signals (ns) in data record
ns * 16 ascii : ns * label (e.g. EEG Fpz-Cz or Body temp) (mind item 9 of the additional EDF+ specs)
ns * 80 ascii : ns * transducer type (e.g. AgAgCl electrode)
ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC)
ns * 8 ascii : ns * physical minimum (e.g. -500 or 34)
ns * 8 ascii : ns * physical maximum (e.g. 500 or 40)
ns * 8 ascii : ns * digital minimum (e.g. -2048)
ns * 8 ascii : ns * digital maximum (e.g. 2047)
ns * 80 ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
ns * 8 ascii : ns * nr of samples in each data record
ns * 32 ascii : ns * reserved
DATA RECORD
nr of samples[1] * integer : first signal in the data record
nr of samples[2] * integer : second signal
..
..
nr of samples[ns] * integer : last signal
Bytes 0 - 127: descriptive text
Bytes 128 - 131: master tag (data type = matrix)
Bytes 132 - 135: master tag (data size)
Bytes 136 - 151: array flags (4 byte tag with data type, 4 byte
tag with subelement size, 8 bytes of content)
Bytes 152 - 167: array dimension (4 byte tag with data type, 4
byte tag with subelement size, 8 bytes of content)
Bytes 168 - 183: array name (4 byte tag with data type, 4 byte
tag with subelement size, 8 bytes of content)
Bytes 184 - ...: array content (4 byte tag with data type, 4 byte
tag with subelement size, ... bytes of content)
Examples
--------
>>> record = read_edf('x001_FAROS.edf',
pn_dir='simultaneous-measurements/raw_data')
"""
if pn_dir is not None:
if "." not in pn_dir:
dir_list = pn_dir.split("/")
pn_dir = posixpath.join(
dir_list[0], download.get_version(dir_list[0]), *dir_list[1:]
)
file_url = posixpath.join(download.PN_INDEX_URL, pn_dir, record_name)
# Currently must download file for MNE to read it though can give the
# user the option to delete it immediately afterwards
with _url.openurl(file_url, "rb") as f:
open(record_name, "wb").write(f.read())
# Open the desired file
edf_file = open(record_name, mode="rb")
# Version of this data format (8 bytes)
version = struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)
# Check to see that the input is an EDF file. (This check will detect
# most but not all other types of files.)
if version != "0 ":
raise Exception(
"Input does not appear to be EDF -- no conversion attempted"
)
else:
if verbose:
print("EDF version number: {}".format(version.strip()))
# Local patient identification (80 bytes)
patient_id = struct.unpack("<80s", edf_file.read(80))[0].decode(encoding)
if verbose:
print("Patient ID: {}".format(patient_id))
# Local recording identification (80 bytes)
# Bob Kemp recommends using this field to encode the start date
# including an abbreviated month name in English and a full (4-digit)
# year, as is done here if this information is available in the input
# record. EDF+ requires this.
record_id = struct.unpack("<80s", edf_file.read(80))[0].decode(encoding)
if verbose:
print("Recording ID: {}".format(record_id))
# Start date of recording (dd.mm.yy) (8 bytes)
start_date = struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)
if verbose:
print("Recording Date: {}".format(start_date))
start_day, start_month, start_year = [int(i) for i in start_date.split(".")]
# This should work for a while
if start_year < 1970:
start_year += 1900
if start_year < 1970:
start_year += 100
# Start time of recording (hh.mm.ss) (8 bytes)
start_time = struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)
if verbose:
print("Recording Time: {}".format(start_time))
start_hour, start_minute, start_second = [
int(i) for i in start_time.split(".")
]
# Number of bytes in header (8 bytes)
header_bytes = int(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding))
if verbose:
print("Number of bytes in header record: {}".format(header_bytes))
# Reserved (44 bytes)
reserved_notes = (
struct.unpack("<44s", edf_file.read(44))[0].decode(encoding).strip()
)
if reserved_notes[:5] == "EDF+C":
# The file is EDF compatible and will work without issue
# See: Bob Kemp, Jesus Olivan, European data format ‘plus’ (EDF+), an
# EDF alike standard format for the exchange of physiological
# data, Clinical Neurophysiology, Volume 114, Issue 9, 2003,
# Pages 1755-1761, ISSN 1388-2457
pass
elif reserved_notes[:5] == "EDF+D":
raise Exception(
"EDF+ File: interrupted data records (not currently supported)"
)
else:
if verbose:
print("Free Space: {}".format(reserved_notes))
# Number of blocks (-1 if unknown) (8 bytes)
num_blocks = int(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding))
if verbose:
print("Number of data records: {}".format(num_blocks))
if num_blocks == -1:
raise Exception(
"Number of data records in unknown (not currently supported)"
)
# Duration of a block, in seconds (8 bytes)
block_duration = float(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding))
if verbose:
print(
"Duration of each data record in seconds: {}".format(block_duration)
)
if block_duration <= 0.0:
block_duration = 1.0
# Number of signals (4 bytes)
n_sig = int(struct.unpack("<4s", edf_file.read(4))[0].decode(encoding))
if verbose:
print("Number of signals: {}".format(n_sig))
if n_sig < 1:
raise Exception("Done: not any signals left to read")
# Label (e.g., EEG FpzCz or Body temp) (16 bytes each)
sig_name = []
for _ in range(n_sig):
temp_sig = struct.unpack("<16s", edf_file.read(16))[0].decode(encoding).strip()
if temp_sig == "EDF Annotations" and not rdedfann_flag:
print(
"*** This may be an EDF+ Annotation file instead, please see "
"the `rdedfann` function. ***"
)
sig_name.append(temp_sig)
if verbose:
print("Signal Labels: {}".format(sig_name))
# Transducer type (e.g., AgAgCl electrode) (80 bytes each)
transducer_types = []
for _ in range(n_sig):
transducer_types.append(
struct.unpack("<80s", edf_file.read(80))[0].decode(encoding).strip()
)
if verbose:
print("Transducer Types: {}".format(transducer_types))
# Physical dimension (e.g., uV or degreeC) (8 bytes each)
physical_dims = []
for _ in range(n_sig):
physical_dims.append(
struct.unpack("<8s", edf_file.read(8))[0].decode(encoding).strip()
)
if verbose:
print("Physical Dimensions: {}".format(physical_dims))
# Physical minimum (e.g., -500 or 34) (8 bytes each)
physical_min = np.array([])
for _ in range(n_sig):
physical_min = np.append(
physical_min,
float(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)),
)
if verbose:
print("Physical Minimums: {}".format(physical_min))
# Physical maximum (e.g., 500 or 40) (8 bytes each)
physical_max = np.array([])
for _ in range(n_sig):
physical_max = np.append(
physical_max,
float(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)),
)
if verbose:
print("Physical Maximums: {}".format(physical_max))
# Digital minimum (e.g., -2048) (8 bytes each)
digital_min = np.array([])
for _ in range(n_sig):
digital_min = np.append(
digital_min,
float(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)),
)
if verbose:
print("Digital Minimums: {}".format(digital_min))
# Digital maximum (e.g., 2047) (8 bytes each)
digital_max = np.array([])
for _ in range(n_sig):
digital_max = np.append(
digital_max,
float(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding)),
)
if verbose:
print("Digital Maximums: {}".format(digital_max))
# Prefiltering (e.g., HP:0.1Hz LP:75Hz) (80 bytes each)
prefilter_info = []
for _ in range(n_sig):
prefilter_info.append(
struct.unpack("<80s", edf_file.read(80))[0].decode(encoding).strip()
)
if verbose:
print("Prefiltering Information: {}".format(prefilter_info))
# Number of samples per block (8 bytes each)
samps_per_block = []
for _ in range(n_sig):
samps_per_block.append(
int(struct.unpack("<8s", edf_file.read(8))[0].decode(encoding))
)
if verbose:
print("Number of Samples per Record: {}".format(samps_per_block))
# The last 32*nsig bytes in the header are unused
for _ in range(n_sig):
struct.unpack("<32s", edf_file.read(32))[0].decode(encoding)
# Pre-process the acquired data before creating the record
record_name_out = (
record_name.split(os.sep)[-1].replace("-", "_").replace(".edf", "")
)
sample_rate = [int(i / block_duration) for i in samps_per_block]
fs = functools.reduce(math.gcd, sample_rate)
samps_per_frame = [int(s / min(samps_per_block)) for s in samps_per_block]
sig_len = int(fs * num_blocks * block_duration)
base_time = datetime.time(start_hour, start_minute, start_second)
base_date = datetime.date(start_year, start_month, start_day)
file_name = n_sig * [record_name_out + ".dat"]
fmt = n_sig * ["16"]
skew = n_sig * [None]
byte_offset = n_sig * [None]
adc_gain_all = (digital_max - digital_min) / (physical_max - physical_min)
adc_gain = [float(format(a, ".12g")) for a in adc_gain_all]
baseline = (digital_max - (physical_max * adc_gain_all) + 1).astype("int64")
units = n_sig * [""]
for i, f in enumerate(physical_dims):
if f == "n/a":
label = sig_name[i].lower().split()[0]
if label in list(SIG_UNITS.keys()):
units[i] = SIG_UNITS[label]
else:
units[i] = "n/a"
else:
f = f.replace("µ", "u") # Maybe more weird symbols to check for?
if f == "":
units[i] = "mV"
else:
units[i] = f
adc_res = [int(math.log2(f)) for f in (digital_max - digital_min)]
adc_zero = [int(f) for f in ((digital_max + 1 + digital_min) / 2)]
block_size = n_sig * [0]
base_datetime = datetime.datetime(
start_year,
start_month,
start_day,
start_hour,
start_minute,
start_second,
)
base_time = datetime.time(
base_datetime.hour, base_datetime.minute, base_datetime.second
)
base_date = datetime.date(
base_datetime.year, base_datetime.month, base_datetime.day
)
if header_only:
return {
"fs": fs,
"sig_len": sig_len,
"n_sig": n_sig,
"base_date": base_date,
"base_time": base_time,
"units": units,
"sig_name": sig_name,
"comments": [],
}
sig_data = np.empty((sig_len, n_sig))
temp_sig_data = np.fromfile(edf_file, dtype=np.int16)
temp_sig_data = temp_sig_data.reshape((-1, sum(samps_per_block)))
temp_all_sigs = np.hsplit(temp_sig_data, np.cumsum(samps_per_block)[:-1])
for i in range(n_sig):
# Check if `samps_per_frame` has all equal values
if samps_per_frame.count(samps_per_frame[0]) == len(samps_per_frame):
sig_data[:, i] = (
temp_all_sigs[i].flatten() - baseline[i]
) / adc_gain_all[i]
else:
temp_sig_data = temp_all_sigs[i].flatten()
if samps_per_frame[i] == 1:
sig_data[:, i] = (temp_sig_data - baseline[i]) / adc_gain_all[i]
else:
for j in range(sig_len):
start_ind = j * samps_per_frame[i]
stop_ind = start_ind + samps_per_frame[i]
sig_data[j, i] = np.mean(
(temp_sig_data[start_ind:stop_ind] - baseline[i])
/ adc_gain_all[i]
)
# This is the closest I can get to the original implementation
# NOTE: This is done using `np.testing.assert_array_equal()`
# Mismatched elements: 15085545 / 15400000 (98%)
# Max absolute difference: 3.75166564e-12
# Max relative difference: 5.41846079e-15
# x: array([[ -3.580728, 42.835293, -102.818048, 54.978632, -52.354247],
# [ -8.340205, 43.079939, -102.106351, 56.402027, -44.992626],
# [ -5.004123, 43.546991, -99.481966, 51.64255 , -43.079939],...
# y: array([[ -3.580728, 42.835293, -102.818048, 54.978632, -52.354247],
# [ -8.340205, 43.079939, -102.106351, 56.402027, -44.992626],
# [ -5.004123, 43.546991, -99.481966, 51.64255 , -43.079939],...
init_value = [int(s[0, 0]) for s in temp_all_sigs]
checksum = [
int(np.sum(v) % 65536) for v in np.transpose(sig_data)
] # not all values correct?
record = Record(
record_name=record_name_out,
n_sig=n_sig,
fs=fs,
samps_per_frame=samps_per_frame,
counter_freq=None,
base_counter=None,
sig_len=sig_len,
base_time=base_time,
base_date=base_date,
comments=[],
sig_name=sig_name, # Remove whitespace to make compatible later?
p_signal=sig_data,
d_signal=None,
e_p_signal=None,
e_d_signal=None,
file_name=n_sig * [record_name_out + ".dat"],
fmt=n_sig * ["16"],
skew=n_sig * [None],
byte_offset=n_sig * [None],
adc_gain=adc_gain,
baseline=baseline,
units=units,
adc_res=[int(math.log2(f)) for f in (digital_max - digital_min)],
adc_zero=[int(f) for f in ((digital_max + 1 + digital_min) / 2)],
init_value=init_value,
checksum=checksum,
block_size=n_sig * [0],
)
record.base_datetime = base_datetime
return record
def wfdb_to_edf(
record_name,
pn_dir=None,
sampfrom=0,
sampto=None,
channels=None,
output_filename="",
edf_plus=False,
):
"""
These programs convert EDF (European Data Format) files into
WFDB-compatible files (as used in PhysioNet) and vice versa. European
Data Format (EDF) was originally designed for storage of polysomnograms.
Note that WFDB format does not include a standard way to specify the
transducer type or the prefiltering specification; these parameters are
not preserved by these conversion programs. Also note that use of the
standard signal and unit names specified for EDF is permitted but not
enforced by `wfdb_to_edf`.
Parameters
----------
record_name : str
The name of the input WFDB record to be read. Can also work with both
EDF and WAV files.
pn_dir : str, optional
Option used to stream data from Physionet. The Physionet
database directory from which to find the required record files.
eg. For record '100' in 'http://physionet.org/content/mitdb'
pn_dir='mitdb'.
sampfrom : int, optional
The starting sample number to read for all channels.
sampto : int, 'end', optional
The sample number at which to stop reading for all channels.
Reads the entire duration by default.
channels : list, optional
List of integer indices specifying the channels to be read.
Reads all channels by default.
output_filename : str, optional
The desired name of the output file. If this value set to the
default value of '', then the output filename will be 'REC.edf'.
edf_plus : bool, optional
Whether to write the output file in EDF (False) or EDF+ (True) format.
Returns
-------
N/A
Notes
-----
The entire file is composed of (seen here: https://www.edfplus.info/specs/edf.html):
HEADER RECORD (we suggest to also adopt the 12 simple additional EDF+ specs)
8 ascii : version of this data format (0)
80 ascii : local patient identification (mind item 3 of the additional EDF+ specs)
80 ascii : local recording identification (mind item 4 of the additional EDF+ specs)
8 ascii : startdate of recording (dd.mm.yy) (mind item 2 of the additional EDF+ specs)
8 ascii : starttime of recording (hh.mm.ss)
8 ascii : number of bytes in header record
44 ascii : reserved
8 ascii : number of data records (-1 if unknown, obey item 10 of the additional EDF+ specs)
8 ascii : duration of a data record, in seconds
4 ascii : number of signals (ns) in data record
ns * 16 ascii : ns * label (e.g. EEG Fpz-Cz or Body temp) (mind item 9 of the additional EDF+ specs)
ns * 80 ascii : ns * transducer type (e.g. AgAgCl electrode)
ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC)
ns * 8 ascii : ns * physical minimum (e.g. -500 or 34)
ns * 8 ascii : ns * physical maximum (e.g. 500 or 40)
ns * 8 ascii : ns * digital minimum (e.g. -2048)
ns * 8 ascii : ns * digital maximum (e.g. 2047)
ns * 80 ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
ns * 8 ascii : ns * nr of samples in each data record
ns * 32 ascii : ns * reserved
DATA RECORD
nr of samples[1] * integer : first signal in the data record
nr of samples[2] * integer : second signal
..
..
nr of samples[ns] * integer : last signal
Bytes 0 - 127: descriptive text
Bytes 128 - 131: master tag (data type = matrix)
Bytes 132 - 135: master tag (data size)
Bytes 136 - 151: array flags (4 byte tag with data type, 4 byte
tag with subelement size, 8 bytes of content)
Bytes 152 - 167: array dimension (4 byte tag with data type, 4
byte tag with subelement size, 8 bytes of content)
Bytes 168 - 183: array name (4 byte tag with data type, 4 byte
tag with subelement size, 8 bytes of content)
Bytes 184 - ...: array content (4 byte tag with data type, 4 byte
tag with subelement size, ... bytes of content)
Examples
--------
>>> wfdb.wfdb_to_edf('100', pn_dir='pwave')
The output file name is '100.edf'
"""
record = rdrecord(
record_name,
pn_dir=pn_dir,
sampfrom=sampfrom,
sampto=sampto,
smooth_frames=False,
)
record_name_out = record_name.split(os.sep)[-1].replace("-", "_")
# Maximum data block length, in bytes
edf_max_block = 61440
# Convert to the expected month name formatting
month_names = [
"JAN",
"FEB",
"MAR",
"APR",
"MAY",
"JUN",
"JUL",
"AUG",
"SEP",
"OCT",
"NOV",
"DEC",
]
# Calculate block duration. (In the EDF spec, blocks are called "records"
# or "data records", but this would be confusing here since "record"
# refers to the entire recording -- so here we say "blocks".)
samples_per_frame = sum(record.samps_per_frame)
# i.e., The number of frames per minute, divided by 60
frames_per_minute = record.fs * 60 + 0.5
frames_per_second = frames_per_minute / 60
# Ten seconds
frames_per_block = 10 * frames_per_second + 0.5
# EDF specifies 2 bytes per sample
bytes_per_block = int(2 * samples_per_frame * frames_per_block)
# Blocks would be too long -- reduce their length by a factor of 10
while bytes_per_block > edf_max_block:
frames_per_block /= 10
bytes_per_block = samples_per_frame * 2 * frames_per_block
seconds_per_block = int(frames_per_block / frames_per_second)
if (frames_per_block < 1) and (bytes_per_block < edf_max_block / 60):
# The number of frames/minute
frames_per_block = frames_per_minute
bytes_per_block = 2 * samples_per_frame * frames_per_block
seconds_per_block = 60
if bytes_per_block > edf_max_block:
print(
(
"Can't convert record %s to EDF: EDF blocks can't be larger "
"than {} bytes, but each input frame requires {} bytes. Use "
"'channels' to select a subset of the input signals or trim "
"using 'sampfrom' and 'sampto'."
).format(edf_max_block, samples_per_frame * 2)
)
# Calculate the number of blocks to be written. The calculation rounds
# up so that we don't lose any frames, even if the number of frames is not
# an exact multiple of frames_per_block
total_frames = record.sig_len
num_blocks = int(total_frames / int(frames_per_block)) + 1
digital_min = []
digital_max = []
physical_min = []
physical_max = []
# Calculate the physical and digital extrema
for i in range(record.n_sig):
# Invalid ADC resolution in input .hea file
if record.adc_res[i] < 1:
# Guess the ADC resolution based on format
if record.fmt[i] == "24":
temp_adc_res = 24
elif record.fmt[i] == "32":
temp_adc_res = 32
elif record.fmt[i] == "80":
temp_adc_res = 8
elif record.fmt[i] == "212":
temp_adc_res = 12
elif (record.fmt[i] == "310") or (record.fmt[i] == "311"):
temp_adc_res = 10
else:
temp_adc_res = 16
else:
temp_adc_res = record.adc_res[i]
# Determine the physical and digital extrema
digital_max.append(
int(record.adc_zero[i] + (1 << (temp_adc_res - 1)) - 1)
)
digital_min.append(int(record.adc_zero[i] - (1 << (temp_adc_res - 1))))
physical_max.append(
(digital_max[i] - record.baseline[i]) / record.adc_gain[i]
)
physical_min.append(
(digital_min[i] - record.baseline[i]) / record.adc_gain[i]
)
# The maximum record name length to write is 80 bytes
if len(record_name_out) > 80:
record_name_write = record_name_out[:79] + "\0"
else:
record_name_write = record_name_out
# The maximum seconds per block length to write is 8 bytes
if len(str(seconds_per_block)) > 8:
seconds_per_block_write = seconds_per_block[:7] + "\0"
else:
seconds_per_block_write = seconds_per_block
# The maximum signal name length to write is 16 bytes
sig_name_write = len(record.sig_name) * []
for s in record.sig_name:
if len(s) > 16:
sig_name_write.append(s[:15] + "\0")
else:
sig_name_write.append(s)
# The maximum units length to write is 8 bytes
units_write = len(record.units) * []
for s in record.units:
if len(s) > 8:
units_write.append(s[:7] + "\0")
else:
units_write.append(s)
# Configure the output datetime
if hasattr("record", "base_datetime"):
start_second = int(record.base_datetime.second)
start_minute = int(record.base_datetime.minute)
start_hour = int(record.base_datetime.hour)
start_day = int(record.base_datetime.day)
start_month = int(record.base_datetime.month)
start_year = int(record.base_datetime.year)
else:
# Set date to start of EDF epoch
start_second = 0
start_minute = 0
start_hour = 0
start_day = 1
start_month = 1
start_year = 1985
# Determine the number of bytes in the header
header_bytes = 256 * (record.n_sig + 1)
# Determine the number of samples per data record
samps_per_record = []
for spf in record.samps_per_frame:
samps_per_record.append(int(frames_per_block) * spf)
# Determine the output data
# NOTE: The output data will be close (+-1) but not equal due to the
# inappropriate rounding done by record.adc()
# For example...
# Mismatched elements: 862881 / 24168000 (3.57%)
# Max absolute difference: 1
# Max relative difference: 0.0212766
# x: array([ 53, -28, 14, ..., 884, 898, 898], dtype=int16)
# y: array([ 53, -28, 14, ..., 884, 898, 898], dtype=int16)
if record.e_p_signal is not None:
temp_data = record.adc(expanded=True)
else:
temp_data = record.adc()
temp_data = [v for v in np.transpose(temp_data)]
out_data = []
for i in range(record.sig_len):
for j, sig in enumerate(temp_data):
ind_start = i * samps_per_record[j]
ind_stop = (i + 1) * samps_per_record[j]
out_data.extend(sig[ind_start:ind_stop].tolist())
out_data = np.array(out_data, dtype=np.int16)
# Start writing the file
if output_filename == "":
output_filename = record_name_out + ".edf"
with open(output_filename, "wb") as f:
print(
"Converting record {} to {} ({} mode)".format(
record_name, output_filename, "EDF+" if edf_plus else "EDF"
)
)
# Version of this data format (8 bytes)
f.write(struct.pack("<8s", b"0").replace(b"\x00", b"\x20"))
# Local patient identification (80 bytes)
f.write(
struct.pack(
"<80s", "{}".format(record_name_write).encode("ascii")
).replace(b"\x00", b"\x20")
)
# Local recording identification (80 bytes)
# Bob Kemp recommends using this field to encode the start date
# including an abbreviated month name in English and a full (4-digit)
# year, as is done here if this information is available in the input
# record. EDF+ requires this.
if hasattr("record", "base_datetime"):
f.write(
struct.pack(
"<80s",
"Startdate {}-{}-{}".format(
start_day, month_names[start_month - 1], start_year
).encode("ascii"),
).replace(b"\x00", b"\x20")
)
else:
f.write(
struct.pack("<80s", b"Startdate not recorded").replace(
b"\x00", b"\x20"
)
)
if edf_plus:
print("WARNING: EDF+ requires start date (not specified)")
# Start date of recording (dd.mm.yy) (8 bytes)
f.write(
struct.pack(
"<8s",
"{:02d}.{:02d}.{:02d}".format(
start_day, start_month, start_year % 100
).encode("ascii"),
).replace(b"\x00", b"\x20")
)
# Start time of recording (hh.mm.ss) (8 bytes)
f.write(
struct.pack(
"<8s",
"{:02d}.{:02d}.{:02d}".format(
start_hour, start_minute, start_second
).encode("ascii"),
).replace(b"\x00", b"\x20")
)
# Number of bytes in header (8 bytes)
f.write(
struct.pack(
"<8s", "{:d}".format(header_bytes).encode("ascii")
).replace(b"\x00", b"\x20")
)
# Reserved (44 bytes)
if edf_plus:
f.write(struct.pack("<44s", b"EDF+C").replace(b"\x00", b"\x20"))
else:
f.write(struct.pack("<44s", b"").replace(b"\x00", b"\x20"))
# Number of blocks (-1 if unknown) (8 bytes)
f.write(
struct.pack(
"<8s", "{:d}".format(num_blocks).encode("ascii")
).replace(b"\x00", b"\x20")
)
# Duration of a block, in seconds (8 bytes)
f.write(
struct.pack(
"<8s", "{:g}".format(seconds_per_block_write).encode("ascii")
).replace(b"\x00", b"\x20")
)
# Number of signals (4 bytes)
f.write(
struct.pack(
"<4s", "{:d}".format(record.n_sig).encode("ascii")
).replace(b"\x00", b"\x20")
)
# Label (e.g., EEG FpzCz or Body temp) (16 bytes each)
for i in sig_name_write:
f.write(
struct.pack("<16s", "{}".format(i).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Transducer type (e.g., AgAgCl electrode) (80 bytes each)
for _ in range(record.n_sig):
f.write(
struct.pack("<80s", b"transducer type not recorded").replace(
b"\x00", b"\x20"
)
)
# Physical dimension (e.g., uV or degreeC) (8 bytes each)
for i in units_write:
f.write(
struct.pack("<8s", "{}".format(i).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Physical minimum (e.g., -500 or 34) (8 bytes each)
for pmin in physical_min:
f.write(
struct.pack("<8s", "{:g}".format(pmin).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Physical maximum (e.g., 500 or 40) (8 bytes each)
for pmax in physical_max:
f.write(
struct.pack("<8s", "{:g}".format(pmax).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Digital minimum (e.g., -2048) (8 bytes each)
for dmin in digital_min:
f.write(
struct.pack("<8s", "{:d}".format(dmin).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Digital maximum (e.g., 2047) (8 bytes each)
for dmax in digital_max:
f.write(
struct.pack("<8s", "{:d}".format(dmax).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# Prefiltering (e.g., HP:0.1Hz LP:75Hz) (80 bytes each)
for _ in range(record.n_sig):
f.write(
struct.pack("<80s", b"prefiltering not recorded").replace(
b"\x00", b"\x20"
)
)
# Number of samples per block (8 bytes each)
for spr in samps_per_record:
f.write(
struct.pack("<8s", "{:d}".format(spr).encode("ascii")).replace(
b"\x00", b"\x20"
)
)
# The last 32*nsig bytes in the header are unused
for _ in range(record.n_sig):
f.write(struct.pack("<32s", b"").replace(b"\x00", b"\x20"))
# Write the data blocks
out_data.tofile(f, format="%d")
# Add the buffer
correct_bytes = num_blocks * sum(samps_per_record)
current_bytes = len(out_data)
num_to_write = correct_bytes - current_bytes
for i in range(num_to_write):
f.write(b"\x00\x80")
print("Header block size: {:d} bytes".format((record.n_sig + 1) * 256))
print(
"Data block size: {:g} seconds ({:d} frames or {:d} bytes)".format(
seconds_per_block, int(frames_per_block), int(bytes_per_block)
)
)
print(
"Recording length: {:d} ({:d} data blocks, {:d} frames, {:d} bytes)".format(
sum(
[
num_blocks,
num_blocks * int(frames_per_block),
num_blocks * bytes_per_block,
]
),
num_blocks,
num_blocks * int(frames_per_block),
num_blocks * bytes_per_block,
)
)
print(
"Total length of file to be written: {:d} bytes".format(
int((record.n_sig + 1) * 256 + num_blocks * bytes_per_block)
)
)
if edf_plus:
print(
(
"WARNING: EDF+ requires the subject's gender, birthdate, and name, as "
"well as additional information about the recording that is not usually "
"available. This information is not saved in the output file even if "
"available. EDF+ also requires the use of standard names for signals and "
"for physical units; these requirements are not enforced by this program. "
"To make the output file fully EDF+ compliant, its header must be edited "
"manually."
)
)
if "EDF-Annotations" not in record.sig_name:
print(
"WARNING: The output file does not include EDF annotations, which are required for EDF+."
)
# Check that all characters in the header are valid (printable ASCII
# between 32 and 126 inclusive). Note that this test does not prevent
# generation of files containing invalid characters; it merely warns
# the user if this has happened.
header_test = open(output_filename, "rb").read((record.n_sig + 1) * 256)
for i, val in enumerate(header_test):
if (val < 32) or (val > 126):
print(
"WARNING: output contains an invalid character, {}, at byte {}".format(
val, i
)
)
def rdedfann(
record_name,
pn_dir=None,
delete_file=True,
info_only=True,
record_only=False,
verbose=False,
encoding="iso8859-1",
):
"""
This program returns the annotation information from an EDF+ file
containing annotations (with the signal name given as 'EDF Annotations').
The information that is returned if `info_only` is set to True is:
{
'onset_time': list of %H:%M:%S.fff strings denoting the annotation
onset times,
'sample_num': list of integers denoting the annotation onset
sample numbers,
'comment': list of comments (`aux_note`) for the annotations,
'duration': list of floats denoting the duration of the event
}
Else, this function will return either the WFDB Annotation format of the
information of the file if `record_only` is set to True, or nothing if
neither are set to True though a WFDB Annotation file will be created.
Parameters
----------
record_name : str
The name of the input EDF record to be read.
pn_dir : str, optional
Option used to stream data from Physionet. The Physionet
database directory from which to find the required record files.
eg. For record '100' in 'http://physionet.org/content/mitdb'
pn_dir='mitdb'.
delete_file : bool, optional
Whether to delete the saved EDF file (False) or not (True)
after being imported.
info_only : bool, optional
Return, strictly, the information contained in the file as formatted
by the original WFDB package. Must not be True if `record_only` is
True.
record_only : bool, optional
Whether to only return the annotation information (True) or not
(False). If False, this function will generate a WFDB-formatted
annotation file. If True, it will return the object returned if that
file were read with `rdann`. Must not be True if `info_only` is True.
verbose : bool, optional
Whether to print all the information read about the file (True) or
not (False).
encoding : str, optional
The encoding to use for strings in the header. Although the edf
specification requires ascii strings, some files do not adhere to it.
Returns
-------
N/A : dict, Annotation, optional
If 'info_only' is set to True, return all of the annotation
information needed to generate WFDB-formatted annotation files.
If 'record_only' is set to True, return the WFDB-formatted annotation
object generated by the `rdann` output. If none are set to True, write
the WFDB-formatted annotation file.
Notes
-----
The entire file is composed of (seen here:
https://www.edfplus.info/specs/edfplus.html#edfplusannotations):
HEADER RECORD (we suggest to also adopt the 12 simple additional EDF+ specs)
8 ascii : version of this data format (0)
80 ascii : local patient identification (mind item 3 of the additional EDF+ specs)
80 ascii : local recording identification (mind item 4 of the additional EDF+ specs)
8 ascii : startdate of recording (dd.mm.yy) (mind item 2 of the additional EDF+ specs)
8 ascii : starttime of recording (hh.mm.ss)
8 ascii : number of bytes in header record
44 ascii : reserved
8 ascii : number of data records (-1 if unknown, obey item 10 of the additional EDF+ specs)
8 ascii : duration of a data record, in seconds
4 ascii : number of signals (ns) in data record
ns * 16 ascii : ns * label (must be 'EDF Annotations')
ns * 80 ascii : ns * transducer type (must be whitespace)
ns * 8 ascii : ns * physical dimension (must be whitespace)
ns * 8 ascii : ns * physical minimum (e.g. -500 or 34, different than physical maximum)
ns * 8 ascii : ns * physical maximum (e.g. 500 or 40, different than physical minimum)
ns * 8 ascii : ns * digital minimum (must be -32768)
ns * 8 ascii : ns * digital maximum (must be 32767)
ns * 80 ascii : ns * prefiltering (must be whitespace)
ns * 8 ascii : ns * nr of samples in each data record
ns * 32 ascii : ns * reserved
ANNOTATION RECORD
Examples
--------
>>> ann_info = wfdb.rdedfann('sample-data/test_edfann.edf')
"""
# Some preliminary checks
if info_only and record_only:
raise Exception(
"Both `info_only` and `record_only` are set. Only one "
"can be set at a time."
)
# According to the EDF+ docs:
# "The coding is EDF compatible in the sense that old EDF software would
# simply treat this 'EDF Annotations' signal as if it were a (strange-
# looking) ordinary signal"
rec = read_edf(
record_name,
pn_dir=pn_dir,
delete_file=delete_file,
record_only=True,
rdedfann_flag=True,
)
# Convert from array of integers to ASCII strings
annotation_string = ""
for chunk in rec.p_signal.flatten().astype(np.int64):
if chunk + 1 == 0:
continue
else:
adjusted_hex = hex(
struct.unpack("<H", struct.pack(">H", chunk + 1))[0]
)
annotation_string += bytes.fromhex(adjusted_hex[2:]).decode(encoding)
# Remove all of the whitespace
for rep in ["\x00", "\x14", "\x15"]:
annotation_string = annotation_string.replace(rep, " ")
# Parse the resulting annotation string
onsets = []
onset_times = []
sample_nums = []
comments = []
durations = []
all_anns = annotation_string.split("+")
for ann in all_anns:
if ann == "":
continue
try:
ann_split = ann.strip().split(" ")
onset = float(ann_split[0])
hours, rem = divmod(onset, 3600)
minutes, seconds = divmod(rem, 60)
onset_time = f"{hours:02.0f}:{minutes:02.0f}:{seconds:06.3f}"
sample_num = int(onset * rec.sig_len)
duration = float(ann_split[1])
comment = " ".join(ann_split[2:])
if verbose:
print(
f"{onset_time}\t{sample_num}\t{comment}\t\tduration: {duration}"
)
onsets.append(onset)
onset_times.append(onset_time)
sample_nums.append(sample_num)
comments.append(comment)
durations.append(duration)
except IndexError:
continue
if info_only:
return {
"onset_time": onset_times,
"sample_num": sample_nums,
"comment": comments,
"duration": durations,
}
else:
df_in = pd.DataFrame(
data={
"onset": onsets,
"duration": durations,
"description": comments,
}
)
df_out = format_ann_from_df(df_in)
# Remove extension from input file name
record_name = record_name.split(os.sep)[-1].split(".")[0]
extension = "atr"
fs = rec.fs
sample = (df_out["onset"].to_numpy() * fs).astype(np.int64)
# Assume each annotation is a comment
symbol = ['"'] * len(df_out.index)
subtype = np.array([22] * len(df_out.index))
# Assume each annotation belongs with the 1st channel
chan = np.array([0] * len(df_out.index))
num = np.array([0] * len(df_out.index))
aux_note = df_out["description"].tolist()
if record_only:
return Annotation(
record_name=record_name,
extension=extension,
sample=sample,
symbol=symbol,
subtype=subtype,
chan=chan,
num=num,
aux_note=aux_note,
fs=fs,
)
else:
wrann(
record_name,
extension,
sample=sample,
symbol=symbol,
subtype=subtype,
chan=chan,
num=num,
aux_note=aux_note,
fs=fs,
)