Resources


Database Credentialed Access

MS-CXR: Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel Coelho de Castro, Anton Schwaighofer, Stephanie Hyland, Harshita Sharma, Maria Teodora Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez Valle, Hoifung Poon, Ozan Oktay

MS-CXR is a new dataset containing 1162 chest X-ray bounding box labels paired with radiology text descriptions, annotated and verified by two board-certified radiologists.

vision-language processing chest x-ray localization phrase grounding

Published: Nov. 15, 2024. Version: 1.1.0


Database Credentialed Access

MS-CXR: Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel Coelho de Castro, Anton Schwaighofer, Stephanie Hyland, Harshita Sharma, Maria Teodora Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez Valle, Hoifung Poon, Ozan Oktay

MS-CXR is a new dataset containing 1162 chest X-ray bounding box labels paired with radiology text descriptions, annotated and verified by two board-certified radiologists.

vision-language processing chest x-ray localization phrase grounding

Published: Nov. 15, 2024. Version: 1.1.0


Database Restricted Access

LATTE-CXR: Locally Aligned TexT and imagE, Explainable dataset for Chest X-Rays

Elham Ghelichkhan, Tolga Tasdizen

This dataset includes bounding box-statement pairs for chest X-ray images, derived from radiologists’ eye-tracking data (for explainability) and annotations, for local visual-language models.

eye-tracking chest x-ray dataset automatically generated dataset caption-guided object detection localization image captioning with region-level description grounded radiology report generation phrase grounding xai multi-modal learning local visual-language models

Published: Feb. 4, 2025. Version: 1.0.0


Database Restricted Access

LATTE-CXR: Locally Aligned TexT and imagE, Explainable dataset for Chest X-Rays

Elham Ghelichkhan, Tolga Tasdizen

This dataset includes bounding box-statement pairs for chest X-ray images, derived from radiologists’ eye-tracking data (for explainability) and annotations, for local visual-language models.

eye-tracking chest x-ray dataset automatically generated dataset caption-guided object detection localization image captioning with region-level description grounded radiology report generation phrase grounding xai multi-modal learning local visual-language models

Published: Feb. 4, 2025. Version: 1.0.0