Resources


Database Restricted Access

CheXchoNet: A Chest Radiograph Dataset with Gold Standard Echocardiography Labels

Pierre Elias, Shreyas Bhave

Early detection of heart failure is vital for improving outcomes. The dataset contains 71,589 CXRs paired with gold standard labels from echocardiograms to enable the training of models to detect pathologies indicative of early stage heart failure.

heart failure chest x-rays early detection cardiac structural abnormalties deep learning

Published: March 20, 2024. Version: 1.0.0


Database Restricted Access

CheXchoNet: A Chest Radiograph Dataset with Gold Standard Echocardiography Labels

Pierre Elias, Shreyas Bhave

Early detection of heart failure is vital for improving outcomes. The dataset contains 71,589 CXRs paired with gold standard labels from echocardiograms to enable the training of models to detect pathologies indicative of early stage heart failure.

heart failure chest x-rays early detection cardiac structural abnormalties deep learning

Published: March 20, 2024. Version: 1.0.0


Database Credentialed Access

Chest X-ray Dataset with Lung Segmentation

Wimukthi Indeewara, Mahela Hennayake, Kasun Rathnayake, Thanuja Ambegoda, Dulani Meedeniya

CXLSeg dataset: Chest X-ray with Lung Segmentation, a comparatively large dataset of segmented Chest X-ray radiographs based on the MIMIC-CXR dataset. This contains segmentation results of 243,324 frontal view images and corresponding masks.

segmentation medical reports u-net chest radiographs mimic-cxr chest x-ray

Published: Feb. 8, 2023. Version: 1.0.0


Database Credentialed Access

Chest X-ray Dataset with Lung Segmentation

Wimukthi Indeewara, Mahela Hennayake, Kasun Rathnayake, Thanuja Ambegoda, Dulani Meedeniya

CXLSeg dataset: Chest X-ray with Lung Segmentation, a comparatively large dataset of segmented Chest X-ray radiographs based on the MIMIC-CXR dataset. This contains segmentation results of 243,324 frontal view images and corresponding masks.

segmentation medical reports u-net chest radiographs mimic-cxr chest x-ray

Published: Feb. 8, 2023. Version: 1.0.0


Database Restricted Access

REFLACX: Reports and eye-tracking data for localization of abnormalities in chest x-rays

Ricardo Bigolin Lanfredi, Mingyuan Zhang, William Auffermann, Jessica Chan, Phuong-Anh Duong, Vivek Srikumar, Trafton Drew, Joyce Schroeder, Tolga Tasdizen

This dataset contains 3032 cases of eye-tracking data collected while five radiologists dictated reports for frontal chest x-rays, synchronized timestamped dictation transcription, and manual labels for validation of localization of abnormalities.

eye tracking radiology report reflacx fixations computer vision chest x-rays gaze machine learning radiology deep learning

Published: Sept. 27, 2021. Version: 1.0.0


Database Restricted Access

REFLACX: Reports and eye-tracking data for localization of abnormalities in chest x-rays

Ricardo Bigolin Lanfredi, Mingyuan Zhang, William Auffermann, Jessica Chan, Phuong-Anh Duong, Vivek Srikumar, Trafton Drew, Joyce Schroeder, Tolga Tasdizen

This dataset contains 3032 cases of eye-tracking data collected while five radiologists dictated reports for frontal chest x-rays, synchronized timestamped dictation transcription, and manual labels for validation of localization of abnormalities.

eye tracking radiology report reflacx fixations computer vision chest x-rays gaze machine learning radiology deep learning

Published: Sept. 27, 2021. Version: 1.0.0


Challenge Credentialed Access

CXR-LT: Multi-Label Long-Tailed Classification on Chest X-Rays

Gregory Holste, Mingquan Lin, Song Wang, Yiliang Zhou, Yishu Wei, Hao Chen, Atlas Wang, Yifan Peng

CXR-LT 2024 was a challenge for long-tailed, multi-label, and zero-shot thorax disease classification on chest X-rays, held at MICCAI 2024. This page contains long-tailed labels for 45 diseases from the CXR-LT 2024 and 2023 challenges.

disease classification artificial intelligence chest x-ray deep learning computer-aided diagnosis long-tailed learning cardiopulmonary disease zero-shot learning

Published: March 19, 2025. Version: 2.0.0


Database Restricted Access

Dataset for Segmentation and Classification of Cardiac Implantable Electronic Devices in Chest X-Rays

Keno Bressem, Felix Busch, Andrei Zhukov, Lisa Adams

This dataset comprises 11,094 converted DICOM and smartphone images of Cardiac Implantable Electronic Devices (CIEDs), collected from 897 patients. It aims to facilitate the development of algorithms for CIED detection and classification.

chest x-ray radiology medical imaging cardiac implantable electronic devices

Published: March 4, 2025. Version: 1.0.0


Database Restricted Access

LATTE-CXR: Locally Aligned TexT and imagE, Explainable dataset for Chest X-Rays

Elham Ghelichkhan, Tolga Tasdizen

This dataset includes bounding box-statement pairs for chest X-ray images, derived from radiologists’ eye-tracking data (for explainability) and annotations, for local visual-language models.

eye-tracking chest x-ray dataset automatically generated dataset caption-guided object detection localization image captioning with region-level description grounded radiology report generation phrase grounding xai multi-modal learning local visual-language models

Published: Feb. 4, 2025. Version: 1.0.0


Database Open Access

CheXmask Database: a large-scale dataset of anatomical segmentation masks for chest x-ray images

Nicolas Gaggion, Candelaria Mosquera, Martina Aineseder, Lucas Mansilla, Diego Milone, Enzo Ferrante

CheXmask Database is a 657,566 uniformly annotated chest radiographs with segmentation masks. Images were segmented using HybridGNet, with automatic quality control indicated by RCA scores.

automatic quality assesment chest x-ray segmentation medical image segmentation

Published: Jan. 22, 2025. Version: 1.0.0